phân tích đa thức thành nhân tử
a)x(x-5)+(5-x)2
b) x2-20x+100
c) x2+5x+6
giúp mik với mik đag cần gấp
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Phân Tích đa thức sau thành nhân tử
a)X2.(X2+4)-X2-4
b)(X2+X)2+4x2+4x-12
c)(x+2).(x+3).(x+4).(x+5)-24
Giúp e với ạ
a) \(x^2\left(x^2+4\right)-x^2-4=x^2\left(x^2+4\right)-\left(x^2+4\right)=\left(x^2+4\right)\left(x^2-1\right)=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)
b) \(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25=\left(x^2+7x+11\right)^2-5^2=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
a. \(x^2\left(x^2+4\right)-x^2-4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2-1\right)\left(x^2+4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+4\right)\)
b. \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
c. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (*)
Đặt \(t=x^2+7x+10\), ta được
(*) \(=t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)\)
hay \(\left(x^2+7x+6\right)\left(x^2+7x+18\right)\)
a: Ta có: \(x^2\left(x^2+4\right)-x^2-4\)
\(=\left(x^2+4\right)\left(x^2-1\right)\)
\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)
b: Ta có: \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-2\left(x^2+x\right)-12\)
\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
c: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
phân tích đa thức thành nhân tử
a) 9-(x-y)2
b)x2+6x+9-y2
a) \(9-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
b) \(x^2+6x+9-y^2=\left(x+3\right)^2-y^2=\left(x+y+3\right)\left(x-y+3\right)\)
Phân tích các đa thức thành nhân tử
a) 3x2 yz + 6xyz
b) 5 ( x + 2 ) - x2 - 2x
c) x2 + 2xy + y2 - 22
\(a,=3xyz\left(x+2\right)\\ b,=5\left(x+2\right)-x\left(x+2\right)=\left(x+2\right)\left(5-x\right)\\ c,=\left(x+y\right)^2-z^2=\left(x+y-z\right)\left(x+y+z\right)\)
a) 3x2yz + 6xyz = 3xyz(x+2)
b) 5(x+2) - x2 - 2x = 5(x+2) - x(x+2) = (5+x)(x+2)
c) x2 + 2xy + y2 - 22 = (x2+2xy+y2) - 22 = (x+y)2 - 22 = (x+y+2)(x+y-2)
3x^2yz + 6xyz=3xyz(x+2)
5(x+2)-x^2-2x=5(x+2)-(x^2+2x)=5(x+2)-x(x+2)=(x+2)(5-x)
x^2+2xy+y^2-2^2=(x+y)^2 -2^2=(x+y+2)(x+y-2)
Bài 2: Phân tích các đa thức sau thành nhân tử
a, (x2 -4)(x2 -10)-72
b, (x+1)(x+2)(x+3)(x+4)+1
c, (x2 +3x+1)(x2+3x-3)-5
a) \(=x^4-14x^2+40-72=x^4-14x^2-32=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
b) \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1=\left(x^2+5x\right)^2+2\left(x^2+5x\right)+1=\left(x^2+5x+1\right)^2\)
c) \(=x^4+3x^3-3x^2+3x^3+9x^2-9x+x^2+3x-3-5=x^4+6x^3+7x^2-6x-8=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
a: Ta có: \(\left(x^2-4\right)\left(x^2-10\right)-72\)
\(=x^4-14x^2-32\)
\(=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
b: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+6\right)\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24+1\)
\(=\left(x^2+5x+1\right)^2\)
phân tích đa thức thành nhân tử
a/ 5x2 - 10x + 5 – 5y2 b/ x2 + x – 30
\(5\left(x-1\right)^2-5y^2=5\left(x-1-y\right)\left(x-1+y\right)\)
\(x^2+6x-5x-30=\left(x-5\right)\left(x+6\right)\)
phân tích đa thức sau thành nhân tử
a) (x-1)4-2(x2-2x+1)+1
b) (x+1)(x+2)(x+4)(x+5)-4
\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
X4 – x3 – 10x2 + 2x +4
Giúp mik với mik đang cần gấp !! Cảm ơn các bạn nhìu nha!!! TYM TYM
a) 3xy2 - 3x3 - 6xy + 3x
=3x (y2 - x2 - 2y +1)
= 3x [ (y-1)2 -x2 ]
=3x (y-1-x)(y-1+x)
b) 3x2 +11x+6
= 3 x2 +9x +2x +6
=3x (x+3)+2(x+3)
= (x+3)(3x+2)
c) -x3 - 4xy2 + 4x2y +16x
= -x (x2 + 4y2 - 4xy -16 )
= -x [(x -2y)2 - 42 ]
= -x(x-2y-4)(x-2y+4)
Phân tích các đa thức sau thành nhân tử
a) x\(^2\)-2x\(^2\)+x
b) x\(^2\)+x-6
c) x\(^2\)+5x+6
giúp mình vs đây là BTVN của mik
\(a,=x-x^2=x\left(1-x\right)\\ b,=x^2+3x-2x-6=\left(x+3\right)\left(x-2\right)\\ c,=x^2+2x+3x+6=\left(x+2\right)\left(x+3\right)\)
a) \(x^2-2x^2+x=-x^2+x=-x\left(x-1\right)\)
b) \(x^2+x-6=\left(x^2+3x\right)-\left(2x+6\right)=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)
c) \(x^2+5x+6=\left(x^2+2x\right)+\left(3x+6\right)=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)