Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thắng Nguyễn
Xem chi tiết
Nguyễn Quang Trung
29 tháng 1 2016 lúc 21:12

máy tính sẵn sàng

Nguyễn Doãn Bảo
31 tháng 1 2016 lúc 18:46

cậu giỏi nhỉ

Nguyễn Quang Trung
31 tháng 1 2016 lúc 20:18

Nguyễn Huy Thắng á hả

lê thị tiều thư
Xem chi tiết
Hung nguyen
15 tháng 2 2017 lúc 9:01

a/ \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)

Điều kiện: \(\left[\begin{matrix}x\le-2\\x>1\end{matrix}\right.\)

Xét \(x\le-2\) thì ta có

\(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-4\sqrt{\left(x-1\right)\left(x+2\right)}=12\)

Đặt \(\sqrt{\left(x-1\right)\left(x+2\right)}=a\left(a\ge0\right)\) thì pt thành

\(a^2-4a-12=0\)

\(\Leftrightarrow\left[\begin{matrix}a=-2\left(l\right)\\a=6\end{matrix}\right.\)

\(\Rightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=6\)

\(\Leftrightarrow x^2+x-38=0\)

\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{2}+\frac{3\sqrt{17}}{2}\left(l\right)\\x=-\frac{1}{2}-\frac{3\sqrt{17}}{2}\end{matrix}\right.\)

Trường hợp x > 1 làm tương tự nhé

Trang-g Seola-a
Xem chi tiết
Đoreamon
Xem chi tiết
Hung nguyen
20 tháng 10 2018 lúc 7:21

Đặt \(\sqrt{x^3-4}=a>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=x^3-4\\a^3=\sqrt[3]{\left(x^2+4\right)^2}+4\end{matrix}\right.\)

\(\Rightarrow a^3+\sqrt[3]{\left(a^2+4\right)^2}=\sqrt[3]{\left(x^2+4\right)^2}+4+x^2\)

\(\Leftrightarrow a^3+\sqrt[3]{\left(a^2+4\right)^2}=\sqrt[3]{\left(x^2+4\right)^2}+x^3-a^2+x^2\)

\(\Leftrightarrow a^3+a^2+\sqrt[3]{\left(a^2+4\right)^2}=x^3+x^2+\sqrt[3]{\left(x^2+4\right)^2}\)

\(\Leftrightarrow a=x\)

\(\Leftrightarrow\sqrt{x^3-4}=x\)

\(\Leftrightarrow x^3-4=x^2\)

\(\Leftrightarrow x=2\)

Nguyễn Hải Dương
18 tháng 10 2018 lúc 21:36

chtt

Hung nguyen
19 tháng 10 2018 lúc 8:32

Đặt \(\sqrt{x^3-4}=a\) để loại cai bình phương ở VP rồi biêt đổi ti thì ra. Không thich thì co thể nhân liên hiệp cũng được nhưng hơi dài.

Hải Anh
Xem chi tiết
Lightning Farron
23 tháng 4 2017 lúc 22:50

Giải phương trình sau: $\left ( x+3 \right )\sqrt{(4-x)(12+x)}+x=28$ - Phương trình, hệ phương trình và bất phương trình - Diễn đàn Toán học

Hà Tô Việt
18 tháng 3 2019 lúc 22:48

(x+3)√−x2−8x+48=28−x(x+3)−x2−8x+48=28−x

đăt:{x+3=a√−x2−8x+48=b{x+3=a−x2−8x+48=b

từ đây ta được hệ pt: {a2+b2=−2x+572ab=2x−48⇒(a−b)2=9⇒[a−b=3a+b=3]{a2+b2=−2x+572ab=2x−48⇒(a−b)2=9⇒[a−b=3a+b=3]

đến đây chắc được rồi.

nghiệm: [x=−2−2√7x=−5−√31]

Nguyễn Thanh
Xem chi tiết
Alice Sophia
Xem chi tiết
Nguyễn Lê Hoàng
26 tháng 2 2018 lúc 12:48

MÌnh nghĩ là bình phương 2 vế lên. CÁch làm như sau:

\(\left(\left(x+3\right)\sqrt{\left(4-x\right)\left(12+x\right)}\right)^2=\left(28-x\right)^2\)

Chắc bạn đã học (axb)2=a2x b2. ÁP dụng vào thôi:

=>(x+3)2 (4-x)(12+x) = (28-x)2

=>(x2+6x+9)(48-8x-x2)=784-56x+x2

=>48x2+288x+432-8x3-48x-72x-x4-6x3-9x2=784-56x+x2

=>39x2+168x+432-14x3-x4=784-56+x2

=>-x4-14x3+38x2+168x-296=0

đến đó bạn thử giải XEM

Xin lỗi vì đã không thể giúp bạn. chúc bạn luôn học tốt

Lê Minh Thư
4 tháng 1 2020 lúc 12:04

\(\left(x+3\right)\sqrt{\left(4-x\right).\left(12+x\right)}=28-x\\ \Leftrightarrow\left(x+3\right)\sqrt{48+4x-12x-x^2}=28-x\\ \Leftrightarrow\left(x+3\right)\sqrt{-x^2-8x+48}=28-x\\ \Leftrightarrow\\ \left[\left(x+3\right)\sqrt{-x^2-8x+48}\right]^2=\left(28-x\right)^2\\ \Leftrightarrow\left(x+3\right)^2\left(-x^2-8x+48\right)=784-56x+x^2\\ \Leftrightarrow-\left(x^2+6x+9\right)\left(x^2+8x+48\right)=784-56x+x^2\\ \Leftrightarrow-\left(x^4+8x^3+48x^2+6x^3+48x^2+288x+9x^2+72x+432\right)=784-56x+x^2\\ \Leftrightarrow-x^4-14x^3-105x^2-360x-432-784+56x-x^2=0\\ \Leftrightarrow-x^4-14x^3-107x^2-416x-1216=0\)

Mình làm tới bước này rồi, cậu có thể nhờ máy tính giải hộ ạ

Khách vãng lai đã xóa
Kem Su
Xem chi tiết
Alice Sophia
Xem chi tiết