Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoreamon

GPT : \(\left(x^3-4\right)^3=\left(\sqrt[3]{\left(x^2+4\right)^2}+4\right)^2\)

Hung nguyen
20 tháng 10 2018 lúc 7:21

Đặt \(\sqrt{x^3-4}=a>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=x^3-4\\a^3=\sqrt[3]{\left(x^2+4\right)^2}+4\end{matrix}\right.\)

\(\Rightarrow a^3+\sqrt[3]{\left(a^2+4\right)^2}=\sqrt[3]{\left(x^2+4\right)^2}+4+x^2\)

\(\Leftrightarrow a^3+\sqrt[3]{\left(a^2+4\right)^2}=\sqrt[3]{\left(x^2+4\right)^2}+x^3-a^2+x^2\)

\(\Leftrightarrow a^3+a^2+\sqrt[3]{\left(a^2+4\right)^2}=x^3+x^2+\sqrt[3]{\left(x^2+4\right)^2}\)

\(\Leftrightarrow a=x\)

\(\Leftrightarrow\sqrt{x^3-4}=x\)

\(\Leftrightarrow x^3-4=x^2\)

\(\Leftrightarrow x=2\)

Nguyễn Hải Dương
18 tháng 10 2018 lúc 21:36

chtt

Hung nguyen
19 tháng 10 2018 lúc 8:32

Đặt \(\sqrt{x^3-4}=a\) để loại cai bình phương ở VP rồi biêt đổi ti thì ra. Không thich thì co thể nhân liên hiệp cũng được nhưng hơi dài.

Hung nguyen
19 tháng 10 2018 lúc 20:41

Thì dùng cái: f(a) = f(b) nếu f(a), f(b) đồng biến hay nghịch biến thì a = b ấy. Không thì liên hợp đi. Nó có nghiệm duy nhất là 2 mà.


Các câu hỏi tương tự
Lê Hồng Anh
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Đỗ Thị Ánh Nguyệt
Xem chi tiết
Quynh Existn
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Quynh Existn
Xem chi tiết
Thiên Yết
Xem chi tiết
Quynh Existn
Xem chi tiết
Xem chi tiết