tìm GTNN của \(x^2-3x+y^2+4y\)
cho 3x-4y=0. tìm GTNN của biểu thúc M= x2+y2
3x-4y=0=>3x=4y=>x=4y/3
bn thay x vào rồi lm tiếp
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
\(A=x-2y+3z\left(x,y,z>0\right)\)
\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)
(1) <=> \(5x+5y=10\) <=> x+ y = 2
=> y = 2-x
Từ (1) => \(2x+4\left(2-x\right)+3z=8\)
=> -2x +3z =0
=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A
=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)
Vậy Amin = -4.
Tìm GTLN hoặc GTNN của biểu thức
C = x2 + y2 - 3x + 4y +5
\(C=x^2+y^2-3x+4y+5\)
\(=x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+y^2+2\times y\times2+2^2-2^2+5\)
\(=\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\)
\(\left(y+2\right)^2\ge0\)
\(\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Vậy Min C = \(-\frac{5}{4}\) khi x = \(\frac{3}{2}\) và y = \(-2\)
1,Tìm số nguyên m để C=căn(m^2+m+1) là số nguyên
2,cho hai số x,y thỏa mãn phương trình : 3x^2+4y^2-4xy-6x+4y=5.Tìm GTLN,GTNN của biểu thức M=2x+2015
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy
Cho x,y là các số dương thoả mãn x+y lớn hơn hoặc bằng 34/35. Tìm GTNN của biểu thức:
A=3x+4y+2/5x+8/7y
Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D
\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)
Đến đây đánh giá cô si + kết hợp giả thiết là xong:D
Tìm GTNN của F=y^2-2xy+3x^2+2y-14x+194x
E+x^2+4y^2-2xy-6y-10*(x-y)+32
Cho \(x\ge1,y\ge1,z\ge1\) và \(3x^2+4y^2+5z^2=52\)
Tìm GTNN của P = x+y+z
Từ giả thiết suy ra
\(\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow xy+yz+zx\ge2\left(x+y+z\right)-3\) (1)
Lại có \(3x^2+4y^2+5z^2=52\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)=52+2x^2+y^2\ge52+2.1+1=55\)
\(\Rightarrow x^2+y^2+z^2\ge11\) (2)
Từ (1) và (2) ta có \(\left(x+y+z\right)^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\ge11+4\left(x+y+z\right)-6\)
\(\Leftrightarrow\left(x+y+z\right)^2-4\left(x+y+z\right)-5\ge0\)
\(\Leftrightarrow P^2-4P-5\ge0\)
\(\Leftrightarrow\left(P+1\right)\left(P-5\right)\ge0\)
\(\Rightarrow P\ge5\)
Vậy \(P_{min}=5\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=3\end{cases}}\)