Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanh ngọc
Xem chi tiết
Hoàng Phúc
21 tháng 5 2016 lúc 8:06

3x-4y=0=>3x=4y=>x=4y/3

bn thay x vào rồi lm tiếp

Lê Chí Công
20 tháng 5 2016 lúc 22:14

ko co dk ak

Lê Chí Công
20 tháng 5 2016 lúc 22:17

neu ko co dk thj la 0

Thanh Ngân
Xem chi tiết
ghdoes
Xem chi tiết
nguyen thi vang
9 tháng 1 2021 lúc 19:34

\(A=x-2y+3z\left(x,y,z>0\right)\)

\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)

(1) <=> \(5x+5y=10\) <=> x+ y = 2

=> y = 2-x

Từ (1) => \(2x+4\left(2-x\right)+3z=8\) 

=> -2x +3z =0

=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A

=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)

Vậy Amin = -4.

 

Trần Thị Thu Hiền
Xem chi tiết
OoO Pipy OoO
8 tháng 8 2016 lúc 8:41

\(C=x^2+y^2-3x+4y+5\)

\(=x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+y^2+2\times y\times2+2^2-2^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(y+2\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Vậy Min C = \(-\frac{5}{4}\) khi x = \(\frac{3}{2}\) và y = \(-2\)

Toản Hồ
Xem chi tiết
tung nguyen viet
Xem chi tiết
Phùng Tuấn Minh
Xem chi tiết
tth_new
19 tháng 8 2019 lúc 8:58

Dự đoán x = 2/5; y =4/7, giúp ta có được lời giải:D

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

Đến đây đánh giá cô si + kết hợp giả thiết là xong:D

gianghomoira123
Xem chi tiết
Trương Trọng Tiến
Xem chi tiết
Thiên An
26 tháng 7 2017 lúc 16:22

Từ giả thiết suy ra

\(\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\ge0\)

\(\Leftrightarrow xy+yz+zx\ge2\left(x+y+z\right)-3\)    (1)

Lại có  \(3x^2+4y^2+5z^2=52\)    

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)=52+2x^2+y^2\ge52+2.1+1=55\)

\(\Rightarrow x^2+y^2+z^2\ge11\)   (2)

Từ (1) và (2) ta có  \(\left(x+y+z\right)^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\ge11+4\left(x+y+z\right)-6\)

\(\Leftrightarrow\left(x+y+z\right)^2-4\left(x+y+z\right)-5\ge0\)

\(\Leftrightarrow P^2-4P-5\ge0\)

\(\Leftrightarrow\left(P+1\right)\left(P-5\right)\ge0\)

\(\Rightarrow P\ge5\)

Vậy  \(P_{min}=5\)  \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=3\end{cases}}\)

Nguyễn Thiều Công Thành
26 tháng 7 2017 lúc 15:50

phải là tìm max chứ