B=1/3.5+1/5.7+1/7.9+1/9.11+1/11.13
Tinh B
1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 +...+ 1/99.101
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{303}\)
\(=\frac{49}{303}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{101}=\frac{49}{101}\)
Hình như Nguyễn Hữu Thế trừ sai.
1/3 - 1/101 = 98/303
A= 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 +...+1/99.101
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}...+\frac{2}{99.101}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{101}\)
\(\Rightarrow2A=\frac{101}{303}-\frac{3}{303}\)
\(\Rightarrow2A=\frac{98}{303}\)
\(\Rightarrow A=\frac{98}{303}:2=\frac{98}{303.2}=\frac{98}{606}=\frac{49}{303}\)
lên 820 điểm hỏi đáp nha
( 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11). X = 2/3
\(\text{Ta có:}\) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}\)
\(\Leftrightarrow2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}.2\)
\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).x=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right).x=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{11}\right)x=\frac{4}{3}\)
\(\Leftrightarrow\frac{10}{11}x=\frac{4}{3}\)
\(\Leftrightarrow x=\frac{4}{3}:\frac{10}{11}=\frac{22}{15}\)
tính
a) 2/3.5+2/5.7+2/7.9+2/9.11+2/11.13
b) 1/1.2.3.4+1/2.3.4.5+1/3.4.5.6+1/27.28.29.30
a,\(\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{11.13}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.............+\frac{1}{11}-\frac{1}{13}\)
=\(\frac{1}{3}-\frac{1}{13}\)
=\(\frac{10}{39}\)
b,Đặt A=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.............+\frac{1}{27.28.29.30}\)
3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...........+\frac{3}{27.28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+.............+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{6}-\frac{1}{24360}\)
3A=\(\frac{1353}{8120}\)
A=\(\frac{451}{8120}\)
Tìm y : ( 1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 ) .y = 2/3.
( \(\frac{1}{1x3}\)+ \(\frac{1}{3x5}\)+....+\(\frac{1}{9x11}\)) x \(y\) = \(\frac{2}{3}\)
( \(\frac{2}{1x3}\)+ \(\frac{2}{3x5}\)+...+\(\frac{2}{9x11}\)) x \(y\) = \(\frac{4}{3}\) (nhân 2 vế lên với 2)
(1 - \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)- ...+ \(\frac{1}{9}\)- \(\frac{1}{11}\)) x \(y\)= \(\frac{4}{3}\)
( 1 - \(\frac{1}{11}\)) x \(y\)=\(\frac{4}{3}\)
\(\frac{10}{11}\) x \(y\) =\(\frac{4}{3}\)
\(y\) = \(\frac{4}{3}\): \(\frac{10}{11}\)
\(y\) = \(\frac{4}{3}\)x \(\frac{11}{10}\)
\(y\) =\(\frac{22}{15}\)
kết quả đúng nhưng mình ko hiểu bạn có thể giáng lại ko ?
Tính tổng 101 số hạng đầu tiên của dãy sau:
1/3.5 ; 1/5.7 ; 1/7.9 ; 1/ 9.11 ; ...
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{203.205}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{203.205}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{203}-\dfrac{1}{205}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{205}\right)\)
\(=\dfrac{1}{2}.\dfrac{202}{615}\)
\(=\dfrac{101}{615}\)
Chúc bạn học tốt!
Tìm x: [12/11-(1/2+1/44].(x-0,2)=1/1.3+1/3.5+1/5.7+1/7.9+1/9.11
Mik giải phía dưới rồi đó. Câu lúc nãy bạn đăng ý
Tìm x: [12/11-(1/2+1/44].(x-0,2)=1/1.3+1/3.5+1/5.7+1/7.9+1/9.11
\(\left[\frac{12}{11}-\left(\frac{1}{2}+\frac{1}{44}\right)\right].\left(x-0,2\right)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{25}{44}.\left(x-0,2\right)=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right)\)
\(x-0,2=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right):\frac{25}{44}\)
\(x-\frac{1}{5}=\frac{22}{25}.\left(1-\frac{1}{11}\right)=\frac{22}{25}.\frac{10}{11}=\frac{4}{5}\)
\(x=\frac{4}{5}+\frac{1}{5}\)
\(x=1\)
a) (\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)) . x =\(\frac{1}{3}\)
b) (\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)) : x = \(\frac{2}{3}\)
c) (\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)) . x = \(\frac{2}{3}\)
Mik đang cần gấp
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
b)( \(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{9}-\frac{2}{11}_{ }\)):x =\(\frac{2}{3}\)
Giống câu a