Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hà Vy
Xem chi tiết
kagamine rin len
Xem chi tiết
Quốc Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 14:12

2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)

\(\Leftrightarrow a^2x+ab=b^2x-b^2\)

\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)

\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)

\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)

Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)

Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)

Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)

Harry James Potter
Xem chi tiết
Min Suga
Xem chi tiết
nguyễn xuân tùng
Xem chi tiết
Agatsuma Zenitsu
Xem chi tiết
Nguyễn Thái Bình
Xem chi tiết
Nguyễn Bình Nguyên
27 tháng 2 2016 lúc 9:42

\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\)  (1)

Xét các bất phương trình thành phần

\(\left(x^2-1\right)\left(x-2\right)\ge0\)  (a)

\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\)  (b)

Ta có T(1)=T(a)\(\cap\) T(b)

Lập bảng xét dấy 

\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)

x-\(\infty\)       -1           1           2                  +\(\infty\)
f(x)        -    0    +     0       -    0      +

Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)

Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1

- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)

Xét các trường hợp sau :

         + Trường hợp 1 :

 \(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\)   \(\Leftrightarrow\)   \(-1\le a\le0\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)

          + Trường hợp 2 

 \(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\)   \(\Leftrightarrow\)   \(-1\le a\le0\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)

 

    + Trường hợp 3 

 \(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\)   \(\Leftrightarrow\)   \(\frac{1}{2}\le a\le1\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)

   + Trường hợp 4

   1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)

   + Trường hợp 5 :

   a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)

- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)

Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm

Từ đó ta kết luận :

+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)

+  Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)

+ Khi 0<a<\(\frac{1}{2}\)  hệ có tập nghiệm T(1) = \(\left[a;1\right]\)

+ Khi \(\frac{1}{2}\)\(\le\)\(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)

+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)

 

 

 

 

 

vanh njdnv
Xem chi tiết