1/ Cho tam giác ABC có AB = 2, BC = 3 và ABC=60
Tính chu vi và diện tích của tam giác ABC
Cho tam giác ABC có Ab= 20cm,BC= 20cm,góc B bằng 60° A.Tính cạnh AC B.Tính chu vi và diện tích tam giác ABC
Bài 1: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 75cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b) Tính diện tích tam giác vuông ABC, biết cạnh AB hơn cạnh AC là 4cm.
Bài 2: Cho tam giác ABC có chu vi 67cm, cạnh AB và AC có tổng độ dài 47 cm.
a) Tính độ dài BC.
b) Tính diện tích tam giác ABC, biết chiều cao AH là 15cm.
Bài 3: Một tam giác vuông có cạnh góc vuông thứ nhất là 24cm, cạnh góc vuông thứ hai bằng 5/8 cạnh góc vuông thứ nhất. Tính diện tích tam giác vuông đó.
Bài 4: Cho tam giác vuông ABC, vuông góc tại A. Chu vi tam giác là 90cm, Cạnh BC là 45cm. Hỏi:
a) Tổng độ dài của cạnh AB và AC là bao nhiêu?
b)Tính diện tích tam giác vuông ABC, biết cạnh AC bằng 4/5 cạnh AB.
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
1 ) Cho tam giác ABC có góc A nhọn , AB=4 , AC=5 và diện tích tam giác ABC =8 . Tính BC
2 ) Cho tam giác ABC có AB=3 , góc ACB = 45° , góc ABC = 60° . Tính BC
em mới học lớp 7 hà
năm nay lên lớp 8 =)))))
1)Ta có: \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)
\(\Leftrightarrow8=\dfrac{1}{2}\times4\times5\times sinA\)
\(\Leftrightarrow\sin A=0,8\)
Lại có: \(\left(\sin A\right)^2+\left(\cos A\right)^2=1\Leftrightarrow\cos A=0,6.\)
Áp dụng định lí hàm số cosin:
\(BC^2=AB^2+AC^2-2AB\times AC\times\cos A\)
\(\Leftrightarrow BC^2=4^2+5^2-2\times4\times5\times0,6=17\)
\(\Leftrightarrow BC=\sqrt{17}.\)
2) Trong \(\Delta ABC\) có: \(g\text{ó}cA+g\text{óc}B+g\text{óc}C=180^o\)
=> BAC=75o.
Áp dụng định lí hàm số sin:
\(\dfrac{AB}{\sin C}=\dfrac{BC}{\sin A}\Leftrightarrow\dfrac{3}{\sin45^o}=\dfrac{BC}{\sin75^o}\)
\(\Leftrightarrow BC=\dfrac{3+3\sqrt{3}}{2}\).
Bài 1: Cho tam giác ABC có AB = 2cm, BC= 4 cm, CA = 3 cm
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
Bài 2: Cho tam giác ABC có A ( 1; -1), B ( 5,-3), C ( 2,0)
a) Chứng minh rằng : A,B,C là 3 đỉnh của tam giác
Tính chu vi và diện tích của tam giác
b) Tìm tọa độ M biết \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)
c) Tìm tâm bán kính đường tròn ngoại tiếp tam giác ABC
Bài 1: hình chữ nhật có chiều dài 12cm, chiều rộng 8cm. Tính chu vi và diện tích HCN
bài 2: chu vi hcn bằng chu vi hình vuông cạnh 20cm. chiều dài hcn bằng 25cm. Tính diện tích hcn
bài 3: cho tam giác ABC có diện tích bằng 120cm2. Biết chiều cao AH =10cm . Tính độ dài cạnh BC.
Bài 4: cho tam giác ABC, AH là đường cao của tam giác ABC. biết AH =5cm, BC =8cm. Tính diện tích tam giác ABC.
Bài 1 Giải
Chu vi HCN là:
(12+8).2= 40(cm)
Diện tích HCN là:
12.8= 96(cm)
Bài 2 Chu vi hình vuông là:
20.4=80(cm)
Mà chu vi hình vuông bằng chu vi HCN nên:
Chiều rộng HCN là:
(80:2) -25=15(cm)
Diện tích HCN là:
15.25=375(cm)
Bài 3 Độ dài cạnh BC là:
120:10.2=24(cm)
Bài 4 Diện tích tam giác ABC là:
( 5.8):2 = 20(cm)
Chúc bn hok tốt~~
Cho tam giác ABC có góc A vuông. Biết tổng độ dài 2 cạnh AB và AC là 10,5cm và cạnh AB bé hơn cạnh AC là 1,5cm.
a. Tính độ dài các cạnh AB;AC và diện tích tam giác ABC.
b.Nếu bớt cạnh BC 1 đoạn CD bằng 3cm thì diện tích tam giác ABC giảm đi 5,4cm2. Tính chu vi tam giác ABC.
Cho tam giác ABC. Biết AB=2; BC=3 và góc ABC=60°. Tính cạnh AC và diện tích tam giác ABC
Áp dụng định lý hàm cosin:
\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{2^2+3^2-2.2.3.cos60^0}=\sqrt{2}\)
Diện tích tam giác:
\(S=\dfrac{1}{2}AB.BC.sinB=\dfrac{1}{2}.2.3.sin60^0=\dfrac{3\sqrt{3}}{2}\)
Cho tam giác ABC vuông tại A . Biết AB,ÁC,BC là các số tự nhiên đơn vị tính là cm. Biết ÁC là 1 số nhỏ nhất có 2 chữ số và chia hết cho 5.
a) Tính chu vi tam giác ABC
b) Tính diện tích tam giác ABC
c)Nếu chu vi tam giác và độ dài cạnh AB không đổi . Tính AB khi BC giảm đi 2 cm
Cho tam giác ABC vuông tại A có AB : AC = 8: 15 , BC= 51 cm . Tính chu vi và diện tích tam giác ABC
Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^0\Leftrightarrow BC^2=AB^2+AC^2\) ( ĐL Pytago )
Vì \(\frac{AB}{AC}=\frac{8}{15}\Leftrightarrow\frac{AB}{8}=\frac{AC}{15}\Leftrightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{BC^2}{64+225}=\frac{2061}{289}=9\)
\(\frac{AB^2}{8^2}=9\Leftrightarrow\sqrt{\frac{AB^2}{8^2}}=\sqrt{9}\Leftrightarrow\frac{AB}{8}=3\Leftrightarrow AB=3.8=24\left(cm\right)\)
\(\frac{AC^2}{15^2}=9\Leftrightarrow\sqrt{\frac{AC^2}{15^2}}=\sqrt{9}\Leftrightarrow\frac{AC}{15}=3\Leftrightarrow AC=15.3=45\left(cm\right)\)
Chu vi \(\Delta ABC=24+45+51=120\left(cm\right)\)
Diện tích \(\Delta ABC=\frac{a\times h}{2}=\frac{24\times45}{2}=\frac{1080}{2}=540\left(cm\right)\)