Cho tam giác ABC vuông cân tại A. Vẽ đường tròn (B; BA)
a) Chứng minh rằng: AC là tiếp tuyến của đường tròn (B; BA)
b) Kẻ tiếp tuyến CD của đường tròn (B; BA) tại D. Tứ giác ABDC là hình gì? Vì sao?
cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
Bài 1. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 5cm; BH=2cm tính BC, HC, AH.
Bài 2: Cho A DEF vuông cân tại D vẽ đường tròn(E; ED)
a) chứng minh DF la tiếp tuyến đường tròn (E; ED)
b, kẻ tiếp tuyến FG của đường tròn (E; ED) tại G.
Tam giac DEFG là hinh gi ? vì sao ?
Bài 2:
a: Xét (E) có
DF⊥DE tại D
nên DF là tiếp tuyến của (E;ED)
giúp tui câu này đc ko chiều tui thi r cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
Cho tam giác ABC vuông cân tại A có đường cao AH. Trên HC lấy K, vẽ hình chữ nhật AHKO. Vẽ đường tròn tâm O bán kính OK, đường tròn này cắt cạnh AB tại D, cắt AC tại E. Gọi F là giao điểm thứ 2 của (O) và đường thẳng AB. Chứng minh rằng:
a) Tam giác AEF vuông cân và DO vuông góc với OE
b) 4 điểm D,A,O,E cùng nằm trên 1 đường tròn
a) +) Gọi P và Q lần lượt là hình chiếu của O trên các đường thẳng AB và AC.
Tứ giác AHKO là hình chữ nhật => OA // HK hay OA // BC => ^FAO = ^ABC; ^EAO = ^ACB
Mà ^ABC = ^ACB = 450 => ^FAO = ^EAO = 450. Do đó: AO là tia phân giác ^EAF
Xét góc EAF: AO là phân giác ^EAF; OP vuông góc AF; OQ vuông góc AE
=> AP = AQ và OP = OQ (T/c điểm nằm trên đường phân giác)
Xét \(\Delta\)OQE và \(\Delta\)OPF có: ^OQE = ^OPF (=900); OQ = OP; OE = OF
=> \(\Delta\)OQE = \(\Delta\)OPF (Cạnh huyền, cạnh góc vuông) => QE = PF (2 cạnh tương ứng)
Ta có: AQ = AP; QE = PF (cmt) => AQ + QE = AP + PF => AE =AF
Xét \(\Delta\)AEF: ^EAF = 900; AE = AF (cmt) => \(\Delta\)AEF vuông cân tại A (đpcm)
+) Ta thấy \(\Delta\)AEF vuông cân ở A (cmt) => ^AFE = 450 hay ^DFE = 450
Xét (O) có: ^DFE là góc nội tiếp đường tròn (O)
=> \(\widehat{DFE}=\frac{1}{2}.sđ\widebat{DE}\)=> ^DOE = 2.^DFE = 900 => DO vuông góc OE (đpcm).
b) Xét tứ giác DAOE có: ^DAE = ^DOE (=900) => Tứ giác DAOE nội tiếp đường tròn (DE)
hay 4 điểm D;A;O;E cùng nằm trên 1 đường tròn (đpcm).
Cho tam giác ABC không cân nội tiếp đường tròn (O) , AD là đường cao của tam giác ABC . Vẽ BE vuông góc với OA tại E , CF vuông góc với OA tại F . Chứng minh rằng M là tâm đường tròn ngoại tiếp tam giác DEF.
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ đường tròn tâm A bán kính AH và kẻ thêm đường kính HD của đường tròn đó. Từ D kẻ tiếp tuyến với đường tròn, cắt AC kéo dài tại E.
a.Chứng minh rằng tam giác BEC là tam giác cân tại B.
b.Chứng minh rằng BE là tiếp tuyến của đường tròn tâm A bán kính AH.
Cho tam giác ABC vuông tại A có đường cao AH (H thuộc BC) Vẽ (A;AH) vẽ đường kính HD.Qua D vẽ tiếp tuyến với đường tròn,tiếp tuyến này cắt BA kéo dài tại điểm E
a)CMR: tam giác ADE=tam giác AHB
b)tam giác CBE cân
c) Gọi I là hình chiếu của A trên CE.CMR:CE là tiếp tuyến của đường tròn (A;AH)
hình bạn tự kẻ nha
a> Xét tam giác ADE và tam giác AHB có : góc DAE = HAB(đối đỉnh); góc ADE = góc AHB = 90 độ; AD = AH = bán kính==> tg ADE = AHB (c.g.v_g.n.k)
b> vì tg ADE = AHB ==> AE = AB ==> A là trung điểm của BE (1)
xét tg CBE ta thấy CA vuông góc với AB ==> CA là đường cao (2)
từ (1) và (2) ==> tg CBE cân tại C
c> vì tg CBE cân tại C ==> CA vừa là đường cao vừa là tia pg xuất phát từ đỉnh C ==> góc ACH = ACI
xét tg ACH và tg ACI có: góc AHC = AIC = 90 độ; AC là cạnh chung; góc ACH = ACI(cmt) ==> tg ACH = ACI (c.h_g.n)
=> AH=AI=bán kính (3)
mặt khác AI vuông góc với CE (4)
từ (3) và (4) ==> CE là tiếp tuyến ( khoảng cách từ tâm đến đường thẳng bằng bán kính)
Cho tam giác ABC vuông tại cân tại A ((các đỉnh vẽ theo chiều dương). Biết đỉnh B cố định, đỉnh A di động trên đường tròn (O;R) . Tìm tập hợp các đỉnh C
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D là điểm đối xứng của B qua H. Vẽ DE song song AB (E thuộc AC). Chứng minh rằng:
a. Tam giác HAE cân tại H.
b. HE là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.