1.Cho tam giác ABC vuông tại A có đường cao AH. Vẽ đường tròn tâm A bán kính AH và kẻ thêm đường kính HD của đường tròn đó. Từ D kẻ tiếp tuyến với đường tròn, cắt AC kéo dài tại E
a) cm rằng tam giác BEC là tam giác cân tại B
b) cm rằng BE là tiếp tuyến của đường tròn tâm A bán kính AH
2. Cho hàm số y=(2m-1)x+2 (1) có đồ thị là đường thẳng dm
a) vẽ đồ thị hàm số (1) khi m=1
b) tìm m để hàm số (1) đồng biến trên R
b) tìm m để dm đồng qui với 2 đường thẳng d1: y= x+4 và d2: y=-2x+7
Cho tam giác ABC vuông ở A,đường cao AH. Vẽ đường tròn tâm A, bán kính AH. Gọi HD là đường kính đường tròn (A:AH). Tiếp tuyến của đường tròn tại D cắt CA ở E. Gọi I là hình chiếu của A trên BE. Chứng minh rằng:
a)Tam giác giác BEC cân
b)AI=AH
c)BE là tiếp tuyến của đường tròn (A:AH)
d)BE=BH + DE
Cho tam giác ABC vuông ở A đường cao AH.Vẽ đường tròn tâm A bán kính AH.Gọi HD là đường kính của đường tròn (A;AH).Tiếp tuyến của đường tròn tại D cắt ở E.
1. Chứng minh tam giác BEC cân
2.Gọi I là hình chiếu của A trên BE.Chứng minh rằng AI=AH
3.Chứng minh rằng BE là tiếp tuyến của đường tròn (A;AH)
4.Chứng minh BE=BH+DE
Cho tam giác ABC đường cao AH vẽ đường tròn tâm a bán kính ah kẻ các tiếp tuyến BD CE với đường tròn be là các tiếp điểm khác chứng minh rằng a ba điểm da e thẳng hàng b d tiếp xúc với đường tròn có đường kính BC c gọi ba cắt d h tại I AC cắt he tại k chứng minh các điểm a yh k thuộc một đường tròn
Mik càn gấp
Cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC.Vẽ đường tròn tâm (A) bán kính AH , vẽ E đối xứng H qua A. Vễ tiếp tuyến với đường tròn tại E cắt CA tại D. Chứng minh: BD tiếp xúc với đường tròn tâm A bán kính AH.
Cho tam giác ABC có góc A=90độ, AH vuông góc với BC. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn đó. Tiếp tuyến tại D của đường tròn cắt CA tại E.
a) Chứng minh tam giác BCE cân
b) Gọi I là hình chiếu của A trên BE. Chứng minh AI=AH
c)Chứng minh BE là tiếp tuyến của (A;AH)
d)Chứng minh BE=BH+DE
Cho tam giác ABC vuông tại A; đường cao AH. Vẽ đường tròn (A;AH). Gọi HD là đường kính của đường tròn đó. Tiếp tuyến của đường tròn tại D cắt CA ở E. Chứng minh rằng BE tiếp xúc với đường tròn (A) tại 1 điểm gọi là I và IA là tiếp tuyến của đường tròn đường kính BC
Cho Tam Giác ABC vuông tại A, đường cao AH Vẽ đường tròn Tâm A bán kính AH kẻ các tiếp tuyến BD.CE với đường tròn Tâm A (D,E lÀ các tiếp điểm khác H). Chứng minh rằng a DB + EC = BC b Ba điểm D,A,E thẳng hàng c DE tiếp súc với đường tròn có đường kính BC
Cho tam giác ABC vuông tại A, đường cao AH,vẽ đường tròn tâm A,bán kính R (với AH=R). Kẻ các tiếp tuyến BD, CE với đường tròn này ( D và E là các tiếp điểm khác với H)
1/Chứng minh rằng tứ giác ADBH nội tiếp một đường tròn
2/tính số BD.CE theo R
3/Cho góc ACB= 30 độ. Tính diện tích tam giác ABC nằm ngoài đường tròn tâm A,bán kính AH theo R