1975/72+1885/90+1755/110+1579/132
1) tìm số tự nhiên x thõa mãn
1/x + 2015/2 x6+014 = 2014/2013 + 1/x+1
2)giải phương trình
x(1975/8*9 + 1885/9*10 + 1755/10*11 + 1579/11*12 + 6)=1/24
Bài 4: Tìm y
a) 100-9:(372:3.y-1)-14=83
b) 7260-120:24.y+924=528.3
c) 2000-52:(615:3:y-15)-14=1984
d) y+y.1/3+5/18=7/18
e) 13/15-(5/21+y).7/12=7/10
h) y+2.y+3.y+4.y+...+10.y=49,5
i) y.(1975/8.9+1885/9.10+1755/10.11+1579/11.12+6=1/24
a)100-9:(372:3.y-1)-14=83
<=>100-9:(124y-1)-14=83
<=>86-9:(124y-1)=83
<=>9:(124y-1)=3
<=>124y-1=3
<=>124y=4
<=>y=\(\frac{1}{31}\approx0,3223\)
b)7260-120:24.y+924=528,3
<=>8184-5y=528,3
<=>5y=7655,7
<=>y=1531,14
c)2000-52:(615:3:y-15)-14=1984
<=>1986-52:(205:y-15)=1984
<=>52:(205:y-15)=2
<=>205:y-15=26
<=>205:y=41
<=>y=5
d)y+y.1/3+5/18=7/18
<=>4/3y=1/9
<=>y=1/12
e)13/15-(5/21+y)7/12=7/10
<=>7/12.(5/21+y)=1/6
<=>5/36+7/12y=1/6
<=>7/12y=1/36
<=>y=1/21\(\approx\)0,4762
h)y+2.y+3.y+...+10.y=49,5
<=>55y=49,5
<=>y=0,9
i)y.(1975/8.9+1885/9.10+1755/10.11+1579/11.12)=1/24
<=>7991,364899y=1/24
<=>y=33/6329161
tích nha mỏi tay quá
A = 128/72 + 110/90 + 90/110 + 68/132 + 44/156 + 28/182
AI ƠI GIÚP MK VS
Đầu tiên: Rút gọn từng số hạng của A
Tiếp theo: Nhóm lại
Cuối cùng: Ra đáp án
A = 16/9 + 11/9 +9/11 +17/33 +11/39 + 2/13
A= (16/9+11/9) + (9/11+17/33) + (11/39+2/13)
A=3+4/3+17/39=62/13
tìm x:x-30-42-56-72=90+110+132+...+930
1/30+1/42+1/56+1/72+1/90+1/110+1/132
1/30 + 1/42 +1/56 +1/72+1/90+1/110+1/132
= 1/5x6+1/6x7+1/7x8+1/8x9+1/9x10+1/10x11+1/11x12
=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
= 1/5 -1/12
=7/60
làm sai rồi lấy đâu ra dấu trừ phải là 1/5+ 1/12 chứ
1/30+1/42+1/56+1/72+1/90+1/110+1/132=21/x
\(\Rightarrow\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+...+\dfrac{1}{11\times12}=\dfrac{21}{x}\\ \Rightarrow\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{12}=\dfrac{21}{x}\\ \Rightarrow\dfrac{1}{5}-\dfrac{1}{12}=\dfrac{21}{x}\\ \Rightarrow\dfrac{21}{x}=\dfrac{7}{60}\Rightarrow x=\dfrac{21\cdot60}{7}=180\)
\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}=\dfrac{21}{x}\)
\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}=\dfrac{21}{x}\)
\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}=\dfrac{21}{x}\)
\(\dfrac{1}{5}-\dfrac{1}{12}=\dfrac{21}{x}\)
Còn lại bạn tự tính
A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
Ta có: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) với mọi số tự nhiên n
\(\Rightarrow A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
Vậy A=7/60
A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
A=\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
=1/5-1/12
=7/60
Dấu chấm là dấu nhân nhé bạn
A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
A=1/5*6+1/6*7+1/7*8+1/8*9+1/9*10+1/10*11+1/11*12
A=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
A=1/5-1/12
A=7/60
A=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
A=\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
A=\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
A=\(\dfrac{1}{5}-\dfrac{1}{12}\)
A=\(\dfrac{12}{60}+\dfrac{-5}{60}\)
A=\(\dfrac{7}{60}\)
A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)
\(;A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(;A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
=1/5.6+1/6.7+1/7.8+`1/8.9+1/9.10+1/10.11+1/11.12
=1/5-1/12
=7/60