cho a, b là các số nguyên thỏa mãn 1218^a+1 chia hết cho 1218^b chứng minh a chia hết cho b
cho a và b là các số nguyên dương thỏa mãn 1218a+1 \(⋮\) 1218b+1. CMR \(a⋮b\)
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
p=a^2+b^2 (1)
p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13 và a,b có 1 chẵn 1 lẻ
A=a.x^2-b.y^2 chia hết cho p, nên có thể viết A = p(c.x^2 -d.y^2) với c,d phải nguyên
và c.p = a và d.p = b
thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p
Đặt \(p=8k+5\left(đk:K\in N\right)\)
Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)
\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)
Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)
Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)
Làm tiếp đi
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b là các số nguyên thỏa mãn (a2+b2) chia hết cho 3 . Chứng minh rằng a và b cùng chia hết cho 3
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
Ngữ thế cũng ko biết ở trong đây toàn bọn ngu🐕🐕🐕🐕🐕🐕🐶🐶🐒🐒🐒
Cho a,b là các số nguyên thỏa mãn a-3b+1 chia hết cho 7 . Chứng minh 43a+11b+15 chia hết cho 7.
Ta có:
a - 3b + 1 chia hết cho 7.
Mà ta có: 42a + 14b + 14 chia hết cho 7.
Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm)
Ta có:
a - 3b + 1 chia hết cho 7.
Mà ta có: 42a + 14b + 14 chia hết cho 7.
Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm)