Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Quốc Thành
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Tuấn Lê
Xem chi tiết
Yoona
Xem chi tiết
Phương An
25 tháng 1 2017 lúc 16:22

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)

\(\frac{yz+xz+xy}{xyz}=0\)

yz + xz + xy = 0

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)

Nguyen Bao Linh
25 tháng 1 2017 lúc 17:40

a) Từ giả thiết suy ra: xy + yz + zx = 0

Do đó:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)

b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)

Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)

Suy ra điều phải chứng minh

Kuro Kazuya
25 tháng 1 2017 lúc 17:59

a)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+xz}{xyz}=0\)

\(\Rightarrow xy+yz+xz=0\)

\(x^2+y^2+z^2=\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2+2xy+2yz+2xz\)

\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

Do \(xy+yz+xz=0\)

\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2\) ( đpcm )

b)

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{2}{\left(a-b\right)\left(b-c\right)}+\frac{2}{\left(b-c\right)\left(c-a\right)}+\frac{2}{\left(a-b\right)\left(c-a\right)}\)

\(\Rightarrow\frac{2}{\left(a-b\right)\left(b-c\right)}+\frac{2}{\left(b-c\right)\left(c-a\right)}+\frac{2}{\left(a-b\right)\left(c-a\right)}=0\)

\(\Rightarrow2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)}\right)=0\)

\(\Rightarrow\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)}=0\)

\(\Rightarrow\frac{\left(c-a\right)^2\left(b-c\right)\left(a-b\right)+\left(a-b\right)^2\left(b-c\right)\left(c-a\right)+\left(b-c\right)^2\left(a-b\right)\left(c-a\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)

\(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)\left[\left(a-b\right)+\left(b-c\right)+\left(c-a\right)\right]}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)

\(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)\left[\left(-a+a\right)+\left(-b+b\right)+\left(-c+c\right)\right]}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)

\(\Rightarrow\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right).0}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=0\)

\(\Rightarrow0=0\) ( đpcm )

Phù thủy lạnh lùng
Xem chi tiết
Nguyệt
24 tháng 12 2018 lúc 16:40

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

Phù thủy lạnh lùng
24 tháng 12 2018 lúc 16:46

cảm ơn nhiều

Diệu Linh
Xem chi tiết
Nguyễn Thủy Nhi
Xem chi tiết
Mây
28 tháng 2 2016 lúc 10:19

Ta có : \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{a}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}=\frac{1}{a}\)  Với mọi a

=> \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

Nguyễn Tuấn Minh
28 tháng 2 2016 lúc 10:19

\(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{a}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}=\frac{1}{a}\)

Vậy....

Tú Nguyễn
Xem chi tiết
tthnew
13 tháng 2 2020 lúc 18:16

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

Khách vãng lai đã xóa
Chu Ngọc Ngân Giang
Xem chi tiết
soyeon_Tiểubàng giải
2 tháng 1 2017 lúc 15:19

2) 1/x - 1/y - 1/z = 1

=> (1/x - 1/y - 1/z)^2 = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 - 2/xy - 2/xz + 2/yz = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(1/xy + 1/xz - 1/yz) = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(z+y-x/xyz) = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.0 = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 = 1 (đpcm)