tinh tong:A=2/1.7+2/7/13+2/13.19+...+2/601.607
Tính
a) A = \(\frac{2}{1.7}\)+\(\frac{2}{7.13}+\frac{2}{13.19}+...+\frac{2}{601.607}\)
giúp mik vs
rất đơn giản
nhân 3 vào tư và mẫu sau đó tách \(\frac{1}{3}\) ra
ta có \(\frac{1}{3}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{601.607}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{601}-\frac{1}{607}\right)\)
=1/3 . ( 1-1/207)
bây giờ tự tính nha
\(2\left(\frac{1}{1.7}+\frac{1}{7.13}+...+\frac{1}{601.607}\right)\)
\(2.\frac{1}{6}\left(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{601}-\frac{1}{607}\right)\)
\(\frac{1}{3}\left(\frac{1}{1}-\frac{1}{607}\right)\)
\(\frac{1}{3}.\frac{606}{607}=\frac{202}{607}\)
1.Tính:a)\(\frac{2}{1.7}+\frac{2}{7.13}+\frac{2}{13.19}+....+\frac{2}{601.607}\)
b)\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
tìm x
\(X:\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{601.607}\right)=0\)
Ta có :\(\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{601.607}\right)\)\(\ne0\)
\(\Rightarrow x=0\)
\(X:\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+......+\frac{5}{601.607}\right)=0\)
\(\Rightarrow X:\left(\frac{5}{1}-\frac{5}{7}+\frac{5}{7}-\frac{5}{13}+\frac{5}{13}+......+\frac{5}{601}-\frac{5}{607}\right)=0\)
\(\Leftrightarrow X:\left(5-\frac{5}{607}\right)=0\)
\(\Leftrightarrow X:\frac{3030}{607}=0\)
\(\Leftrightarrow X=0\)
CÁCH 2:\(X:\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{601.607}\right)=0\)
\(\Leftrightarrow X=0.\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{601.607}\right)\)
\(\Leftrightarrow X=0\)
Tính:
a) C= 2/1.7+ 2/7.13+2/13.19+...+2/1013.1019
b) D= 7/1.9+7/9.17+7/17.25+...+7/2011.2019
a/\(C=\dfrac{2}{1.7}+\dfrac{2}{7.13}+\dfrac{2}{13.19}+...+\dfrac{2}{1013.1019}\)
\(=\dfrac{1}{3}\left(\dfrac{6}{1.7}+\dfrac{6}{7.13}+\dfrac{6}{13.19}+...+\dfrac{6}{1013.1019}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{1013}-\dfrac{1}{1019}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{1019}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{1018}{1019}\)
\(=\dfrac{1018}{3057}\)
b/\(D=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{2011.2019}\)
\(=\dfrac{7}{8}\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{2011.2019}\right)\)
\(=\dfrac{7}{8}\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{2011}-\dfrac{1}{2019}\right)\)
\(=\dfrac{7}{8}\left(1-\dfrac{1}{2019}\right)\)
\(=\dfrac{7}{8}\cdot\dfrac{2018}{2019}\)
\(=\dfrac{7063}{8076}\)
a) Ta có :
\(C=\dfrac{2}{1.7}+\dfrac{2}{7.13}+\dfrac{2}{13.19}+...+\dfrac{2}{1013.1019}\)
\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{6}{1.7}+\dfrac{6}{7.13}+\dfrac{6}{13.19}+...+\dfrac{6}{1013.1019}\right)\)
\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{1013}-\dfrac{1}{1019}\right)\)
\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{1019}\right)\)
\(\Rightarrow C=\dfrac{1}{3}.\dfrac{1018}{1019}\)
\(\Rightarrow C=\dfrac{1018}{3057}\)
b) Ta có:
\(D=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{2011.2019}\)
\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{2011.2019}\right)\)
\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{1}{1}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{2011}-\dfrac{1}{2019}\right)\)
\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{1}{1}-\dfrac{1}{2019}\right)\)
\(\Rightarrow D=\dfrac{7}{8}.\dfrac{2018}{2019}\)
\(\Rightarrow D=\dfrac{7063}{8076}\)
tính G= \(\frac{6^2}{1.7}+\frac{6^2}{7.13}+\frac{6^2}{13.19}+...+\frac{6^2}{n\left(n+6\right)}\)
G=6(6/1.7+6/7.13+6/13.19+..+6/n(n+6) )
=6(1-1/7+1/7-1/13+1/13-1/19+....+1/n-1/n+6)
=6(1-n/n+6)
=6.6/n+6
=36/n+6
vậy G=36/n+6
a, A=1.7+7.13+13.19+19.25+.....+9.97
b, B= 2^2+3^2+4^2+...........+80^2
c, C=1.99+2.98+3.97+.......+99.1
giúp mình đc ko
mình đang cần gấp
1/1.7+1/7.13+1/13.19+......+1/61.67
1/1.2.3+1/2.3.4+1/3.4.5+.......+1/8.9.10
1/1+2 + 1/1+2+3 + 1/1+2+3+4 +.......+ 1/1+2+3+....+99
CẦN GẤP
\(\frac{1}{1.7}+\frac{1}{7.13}+\frac{1}{13.19}+...+\frac{1}{61.67}\)
=6.\(\left(\frac{1}{1.7}+\frac{1}{7.13}+...+\frac{1}{61.67}\right)\):6
=\((\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{61.67}):6\)
=\(\left(1-\frac{1}{7}+\frac{1}{7}+\frac{1}{13}+...+\frac{1}{61}+\frac{1}{67}\right):6\)
=\(\left(1-\frac{1}{67}\right):6\)
=\(\frac{66}{67}:6=\frac{66}{67}.\frac{1}{6}=\frac{11}{67}\)
Tinh tong:
a)S1=1+2+3+...+999 b)S2=10+12+14+..2010
c)S5=1+4+7+...+79 d)S6=15+17+19+21+...+151+153+155
E = 36 / 1.7 + 36 / 7.13 + 36 / 13.19 + .... + 36 / 94.100
F = 1 / 10 + 1 / 40 + 1 / 88 + .... + 1 / ( 3a+z) ( 3a+ 5)
G = 1 / 2.3 + 2 / 3.5 + 3 / 5.8 + 4 / 8.12 + 5 / 12.17
E = \(\frac{36}{1\cdot7}+\frac{36}{7\cdot13}+...+\frac{36}{94\cdot100}=\frac{36}{6}\left[\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+...+\frac{1}{94\cdot100}\right]\)
\(=6\left[1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{94}-\frac{1}{100}\right]=6\left[1-\frac{1}{100}\right]\)
\(=6\cdot\frac{99}{100}=\frac{297}{50}\)
F = \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{\left[3a+2\right]\left[3a+5\right]}\)
\(=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{\left[3a+2\right]\left[3a+5\right]}\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{3a+2}-\frac{1}{3a+5}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3a+5}\right]=\frac{1}{6}-\frac{1}{9a+15}\)
G = \(\frac{1}{2\cdot3}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}+\frac{4}{8\cdot12}+\frac{5}{12\cdot17}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{12}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
E=36/1-36/7+36/7-36/13+...+36/94-36/100
=36-36/100=891/25