a/\(C=\dfrac{2}{1.7}+\dfrac{2}{7.13}+\dfrac{2}{13.19}+...+\dfrac{2}{1013.1019}\)
\(=\dfrac{1}{3}\left(\dfrac{6}{1.7}+\dfrac{6}{7.13}+\dfrac{6}{13.19}+...+\dfrac{6}{1013.1019}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{1013}-\dfrac{1}{1019}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{1019}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{1018}{1019}\)
\(=\dfrac{1018}{3057}\)
b/\(D=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{2011.2019}\)
\(=\dfrac{7}{8}\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{2011.2019}\right)\)
\(=\dfrac{7}{8}\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{2011}-\dfrac{1}{2019}\right)\)
\(=\dfrac{7}{8}\left(1-\dfrac{1}{2019}\right)\)
\(=\dfrac{7}{8}\cdot\dfrac{2018}{2019}\)
\(=\dfrac{7063}{8076}\)
a) Ta có :
\(C=\dfrac{2}{1.7}+\dfrac{2}{7.13}+\dfrac{2}{13.19}+...+\dfrac{2}{1013.1019}\)
\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{6}{1.7}+\dfrac{6}{7.13}+\dfrac{6}{13.19}+...+\dfrac{6}{1013.1019}\right)\)
\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+...+\dfrac{1}{1013}-\dfrac{1}{1019}\right)\)
\(\Rightarrow C=\dfrac{1}{3}.\left(\dfrac{1}{1}-\dfrac{1}{1019}\right)\)
\(\Rightarrow C=\dfrac{1}{3}.\dfrac{1018}{1019}\)
\(\Rightarrow C=\dfrac{1018}{3057}\)
b) Ta có:
\(D=\dfrac{7}{1.9}+\dfrac{7}{9.17}+\dfrac{7}{17.25}+...+\dfrac{7}{2011.2019}\)
\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{8}{1.9}+\dfrac{8}{9.17}+\dfrac{8}{17.25}+...+\dfrac{8}{2011.2019}\right)\)
\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{1}{1}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{25}+...+\dfrac{1}{2011}-\dfrac{1}{2019}\right)\)
\(\Rightarrow D=\dfrac{7}{8}.\left(\dfrac{1}{1}-\dfrac{1}{2019}\right)\)
\(\Rightarrow D=\dfrac{7}{8}.\dfrac{2018}{2019}\)
\(\Rightarrow D=\dfrac{7063}{8076}\)