Tìm m để phương trình x^4-(3m+2)x^2+3m+1=0 có 4 nghiệm phân biệt nhỏ hơn 2
Cho phương trình : \(x^2+\left(3m+2\right)x+3m=0\).
Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) sao cho biểu thức \(Q=\left(x_1+1\right)^4+\left(x_2+1\right)^4\) đạt giá trị nhỏ nhất .
\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)
\(Q=a^4+b^4\ge2a^2b^2=2\)
Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)
\(\Rightarrow-3m=0\Rightarrow m=0\)
x2+(3m+2)x+3m+1=0. Tìm tất cả các giá trị của m để phương trình có 2 nghiệm phân biệt nhỏ hơn 2
Thanks những ai đã giúp nhá!!!!!!!!!!!!
Tìm các tham số thực m để phương trình \(x^2+\left(3m-4\right)x+2m^2-4m=0\) có hai nghiệm phân biệt nhỏ hơn 9
tìm M để phương trình x^2-2(m-1)x+m^2-3m+4=0 có 2 nghiệm phân biệt x1,x2 sao cho x1=2x2
Cho pt : x^2 - 2(m-1)x + m^2 - 3m + 4 = 0 (m là tham số) . a. Giải phương trình khi m = 2 . b, Tìm m để phương trình có 2 nghiệm phân biệt
a: Thay m=2 vào pt, ta được:
\(x^2-2x+2=0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-3m+4\right)>0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+12m-16>0\)
=>4m>12
hay m>3
Cho phương trình x2+ (m+1)x -3m = 0. Tìm m để phương trình có hai nghiệm phân biệt sao cho 2< x1<x2< 4.
Cho pt: x2 + (3m + 2)x + 3m + 1 = 0
Tìm tất cả giá trị của m để pt có 2 nghiệm phân biệt nhỏ hơn 2
Xét phương trình đã cho có dạng: $ax^2+bx+c=0$ với \(\left\{{}\begin{matrix}a=1\ne0\\b=3m+2\\c=3m+1\end{matrix}\right.\)
suy ra phương trình đã cho là phương trình bậc hai một ẩn $x$
Có $Δ=b^2-4ac=(3m+2)^2-4.(3m+1).1=9m^2=(3m)^2 \geq 0$ với mọi $m$ nên phương trình có 2 nghiệm phân biệt $⇔m \neq 0$
nên phương trình đã cho có 2 nghiệm $x_1;x_2$ với
$x_1=\dfrac{-b-\sqrt[]{ Δ}}{2a}=\dfrac{-(3m+2)-3m}{2}=-3m-1$
$x_2=\dfrac{-b+\sqrt[]{Δ}}{2a}=\dfrac{-(3m+2)+3m}{2}=-1$
Nên phương trình có 2 nghiệm nhỏ hơn 2 $⇔-3m-1<2⇔m>-1$
Vậy $m>-1;m \neq 0$ thỏa mãn đề
Ta có: \(\text{Δ}=\left(3m+2\right)^2-4\cdot1\cdot\left(3m+1\right)\)
\(=9m^2+12m+4-12m-4\)
\(=9m^2\ge0\forall m\)
Do đó: Phương trình luôn có 2 nghiệm
Để phương trình có hai nghiệm phân biệt thì \(9m^2\ne0\)
hay \(m\ne0\)
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m-2}{1}=-3m-2\\x_1\cdot x_2=\dfrac{3m+1}{1}=3m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1-2\left(-3m-2\right)+4>0\\-3m-2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1+6m+4+4>0\\-3m< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9m>-9\\m< -2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\Leftrightarrow-3< m< -2\)
Kết hợp ĐKXĐ, ta được: -3<m<-2
Vậy: -3<m<-2
Tìm tất cả các giá trị của tham số m để phương trình x^4-2mx^2+3m+1=0 có 4 nghiệm phân biệt
Cho phương trình \(x^2-4mx+3m^2-3=0\)
Tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\)thỏa mãn \(\left|\dfrac{x_1+x_2+4}{x_1+x_2}\right|\)đặt Max
Đề bài sai bạn
Biểu thức \(\left|\dfrac{x_1+x_2+4}{x_1+x_2}\right|=\left|1+\dfrac{1}{m}\right|\) này ko tồn tại max, chỉ tồn tại min