Chứng minh rằng: phân số 3n-1/2n-1 là 1 phân số tối giản
chứng minh rằng 2n+1/3n+2 là phân số tối giản
Gọi UWCLN(2n + 1; 3n + 2) = d
Ta có :
2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d
Áp dụng công thức đồng dư, ta có :
6n + 4 - 6n - 3 = 1
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản vì có ước chung là 1
Chứng minh rằng với mọi giá trị nguyên của
n thì phân số 2n+1/3n+2 là phân số tối giản
Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+2\right)⋮d\)
\(\Leftrightarrow-1⋮d\)
=>d=1
=>UCLN(2n+1;3n+2)=1
=>2n+1/3n+2 là phân số tối giản
Chứng minh rằng các phân số 2n+1/3n+2;4n+1/6n+1 là phân số tối giản với mọi số tự nhiên n
\(\frac{2n+1}{3n+2}\)
Gọi \(d\inƯC\left(2n+1;3n+2\right)\)
Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow6n+4-6n+3⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)
\(\frac{4n+1}{6n+1}\)
Gọi \(d\inƯC\left(4n+1;6n+1\right)\)
Ta có :
\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)
\(\Leftrightarrow12n+3-12n+2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Chứng tỏ rằng phân số \(\dfrac{2n+1}{3n+2}\) là phân số tối giản
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
vậy ...
Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)
Nên 2n+1⁝ d và 3n+2 ⁝ d
⇒ 3(2n+1) ⁝ d và 2(3n+2)
⇒ 6n+3 ⁝ d và 6n+4 ⁝ d
⇒ ( 6n+4 - 6n+3) ⁝ d
⇒ 1⁝ d
⇒ d= 1
Vậy:..
Chúc bạn học tốt
chứng minh rằng với mọi số nguyên n,các phân số A=2n+2/3n+1 ko phải là phân số tối giản
chứng tỏ rằng phân số 2n+1\3n+2 là phân số tối giản ?
https://h.vn/hoi-dap/question/39186.html
Gọi d là ƯCLN ( 2n + 1 ; 3n + 2 )( d thuộc N* )
=> 2n + 1 chia hết cho d ; 3n + 2 chia hết cho d
=> 3( 2n + 1 ) chia hết cho d ; 2( 3n + 2 ) chia hết cho d
=> 6n + 3 chia hết cho d ; 6n + 4 chia hết cho d
=> ( 6n + 4 ) - ( 6n + 3 ) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN( 2n + 1 ; 3n + 2 ) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
Gọi d là ƯC của 2n + 1 và 3n + 3
Ta có: 2n + 1 ⋮ d => 6n + 3 ⋮ d
Và 2n + 2 ⋮ d => 6n + 4 ⋮ d
Do đó:
(6n + 4) - (6n + 3) ⋮ d
=> (6n - 6n) (4 - 3) ⋮ d
=> 1 ⋮ d => d = 1
Hay ƯC(2n + 1, 3n + 2) = 1
=> 2n + 1 / 3n + 2 tối giản
1. Chứng minh rằng n-5/3n-14 là phân số tối giản với mọi số nguyên n.
2. Tìm số nguyên n để phân số 2n-1/3n+2 rút gọn được
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
chứng tỏ rằng phân số 2n+1\3n+2 là phân số tối giản ?
GIẢI TIẾP : Từ [1] và [2] => 1 chia hết cho d => d = 1
=> dpcm
cho minh cai dung
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
=>ĐPCM
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
chứng tỏ rằng phân số 2n+1 phần 3n+2 là phân số tối giản
Gọi d là ƯCLN(2n+1;3n+2)
Ta có 2n+1 chia hết cho d nên 3(2n+1) cũng chia hết cho d hay 6n+3 cũng chia hết cho d
3n+2 chia hết cho d nên 2(3n+2) cũng chia hết cho d hay 6n+4 cũng chia hết cho d
Ta suy ra [(6n+4)-(6n+3)] chia hết cho d
(6n+4-6n-3) chia hết cho d
1 chia hết cho d
nên d=1
Vì ƯCLN(2n+1;3n+2)=1 nên 2n+1 phần 3n+2 là phân số tối giản (tick nhé )
Gọi a là ước chung lớn nhất của \(\frac{2n+1}{3n+2}\)
suy ra 2n+1 chia hết cho a
3n+2 chia hết cho a
nên 3.(2n+1) chia hết cho a
2(3n+2) chia hết cho a
=> 6n+3 chia hết cho a
6n+4 chia hết cho a
vậy (6n+4)-(6n+3) chia hết cho a
1 chia hết cho a
vậy a=1
=> phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản.