Tìm tất cả các cặp số nguyên x,y sao cho: 6x + 99 = 20 . y
bn nào giúp mik vs ạk !
tìm tất cả các cặp số nguyên x,y sao cho: xy-2x+y=1
Giúp mik với mình cần gấp, thank you!
\(xy-2x+y=1\)
\(\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-1\)
\(\Leftrightarrow\left(x+1\right)\left(y-2\right)=-1\)
Ta có bảng sau:
| \(x+1\) | 1 | -1 |
| \(y-2\) | -1 | 1 |
| \(x\) | 0 | -2 |
| \(y\) | 1 | 3 |
Vậy ta tìm được các cặp số \(\left(0;1\right);\left(-2;3\right)\) thỏa yêu cầu bài toán.
tìm tất cả cặp số nguyên x,y sao cho : xy-2x-y =1
Tìm tất cả các cặp số nguyên X Y sao cho 20 x + 10 x = 2010
10x+20y=2010? hay 10y+20x=2010?
Tìm tất cả các cặp số nguyên (x,y) sao cho xy+x+y=30
Giải giúp với ạ!
x2.(y+1) + y = 30
x2. (y+1) + (y+1) = 29
(y+1).(x2+1) = 29 = 1 . 29 = 29 . 1
Tìm tất cả các cặp số nguyên x; y sao cho:
20x+10y=2010
ai trả lời đúng mik sẽ tích cho người đó.
Ta có 20x + 10y = 2010
=> 2x+y = 201
Ta có 201 là số lẻ, 2x là số chẵn
=> y là số lẻ => y có dạng 2k+1
=> x = 100-k (k là số nguyên)
Giải:
\(20x+10y=2010\)
⇔\(2x+y=201\)
\(2x\) là số chẵn \(;\) \(201\) là số lẻ ➩ \(y\) là số lẻ . Đặt \(y\) \(2k+1\)
➩\(2x+2k+1=201\)
⇔\(x=\dfrac{201-2k-1}{2}=100-k\)
Vậy \((x;y)=(100-k;2k+1)+k\) ∈ \(z\) (có ∞ ngiệm)
=> 10(2x+y)=2010
=> 2x+y=201 (1)
Ta co 201 là số lẻ,2x là số chẵn
=> y là số lẻ=> y=2k+1
Thay y= 2k+1 vào (1) ta được:
2x+2k+1=201
=> 2(x+k)+1=201
=> 2(x+k) =201-1
=> 2(x+k) = 200
=> x+k=100
=> x= 100-k ( k∈Z)
Tìm cặp số nguyên x, y sao cho
a, ( x - 1 ) ( y + 2 ) = 5
b, ( x - 1 ) ( y + 2 ) = 3
GIÚP MIK NHA MIK TICK CHO BN NÀO LÀM ĐÚNG MÀ NHANH NHẤT
tìm tất cả các cặp số nguyên (x;y) vs x>1, y>1 sao cho (3x+1)\(⋮\)x
bài trên đang còn: đồng thời ( 3y+1)\(⋮\)y
Tìm tất cả các cặp số hữu tỉ (x,y) sao cho x+y và 1/x +1/y đều là các số nguyên. bạn nào trả lời nhanh nhất mà đúng thì mik tích cho nhé
Ta cần tìm tất cả các cặp số hữu tỉ \(\left(\right. x , y \left.\right)\) sao cho:
\(x + y \in \mathbb{Z}\)\(\frac{1}{x} + \frac{1}{y} \in \mathbb{Z}\)🔍 Bước 1: Gọi \(x , y \in \mathbb{Q}\) (số hữu tỉ), đặt:\(x + y = a \in \mathbb{Z}\)\(\frac{1}{x} + \frac{1}{y} = \frac{x + y}{x y} = \frac{a}{x y} = b \in \mathbb{Z}\)Từ đó:
\(\frac{a}{x y} = b \Rightarrow x y = \frac{a}{b}\)
Vậy ta có hệ:
\(\left{\right. x + y = a \in \mathbb{Z} \\ x y = \frac{a}{b} \in \mathbb{Q}\)
🔍 Bước 2: Giải hệ bằng định lý Vi-ét đảoTừ tổng và tích \(x + y = a\), \(x y = \frac{a}{b}\), ta xem \(x , y\) là nghiệm của phương trình bậc 2:
\(t^{2} - a t + \frac{a}{b} = 0\)
Phương trình này có nghiệm hữu tỉ khi:
Hệ số \(a \in \mathbb{Z}\), \(\frac{a}{b} \in \mathbb{Q}\)Điều kiện cần là phân biệt và hữu tỉ, tức là:\(\Delta = a^{2} - 4 \cdot \frac{a}{b} = a^{2} - \frac{4 a}{b} \in \mathbb{Q}\)
→ Ta muốn nghiệm là hữu tỉ, nên căn thức phải là số hữu tỉ, tức:
\(a^{2} - \frac{4 a}{b} \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{b} \overset{ˋ}{\imath} \text{nh}\&\text{nbsp};\text{ph}ưo\text{ng}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp};\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{h}ữ\text{u}\&\text{nbsp};\text{t}ỉ\)
Để đơn giản, ta chọn các giá trị nhỏ để tìm cặp cụ thể.
🔍 Bước 3: Thử giá trị cụ thểVí dụ: chọn \(a = 2\), \(b = 1\)→ \(x + y = 2\), \(x y = \frac{2}{1} = 2\)
Giải phương trình:
\(t^{2} - 2 t + 2 = 0 \Rightarrow \Delta = 4 - 8 = - 4 \Rightarrow \text{v} \hat{\text{o}} \&\text{nbsp};\text{nghi}ệ\text{m}\&\text{nbsp};(\text{kh} \hat{\text{o}} \text{ng}\&\text{nbsp};\text{ph}ả\text{i}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{h}ữ\text{u}\&\text{nbsp};\text{t}ỉ)\)
Thử \(a = 2\), \(b = 2 \Rightarrow x y = 1\)Phương trình: \(t^{2} - 2 t + 1 = 0 \Rightarrow \left(\right. t - 1 \left.\right)^{2} = 0 \Rightarrow x = y = 1\)
✅ Thỏa mãn:
\(x + y = 2 \in \mathbb{Z}\)\(\frac{1}{x} + \frac{1}{y} = 1 + 1 = 2 \in \mathbb{Z}\)Vậy \(\left(\right. 1 , 1 \left.\right)\) là 1 cặp nghiệm.
✅ Kết luận tổng quát:Với \(x , y \in \mathbb{Q}\), thỏa mãn:
\(x + y = a \in \mathbb{Z} , x y = \frac{a}{b} \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; b \in \mathbb{Z}\)
Thì \(x , y\) là nghiệm của phương trình:
\(t^{2} - a t + \frac{a}{b} = 0\)
Muốn \(x , y \in \mathbb{Q}\) thì phương trình trên phải có nghiệm hữu tỉ. Do đó:
✅ Tập hợp nghiệm là các cặp số hữu tỉ \(\left(\right. x , y \left.\right)\) sao cho:\(x + y \in \mathbb{Z}\)\(x y \in \mathbb{Q}\)Và \(x , y\) là nghiệm hữu tỉ của phương trình \(t^{2} - \left(\right. x + y \left.\right) t + x y = 0\)Tìm tất cả các cặp số nguyên x,y sao cho : x-2xy + y = 0
\(\Rightarrow2x-4xy+2y=0\\ \Rightarrow2x\left(1-2y\right)+2y-1=-1\\ \Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\)
Với \(\left\{{}\begin{matrix}2x-1=1\\2y-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\rightarrow\left(1;1\right)\)
Với \(\left\{{}\begin{matrix}2x-1=-1\\2y-1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\rightarrow\left(0;0\right)\)
Vậy các cặp \(\left(x;y\right)\) cần tìm là \(\left(1;1\right);\left(0;0\right)\)
tìm tất cả các số nguyên dương (x,y) sao cho x^2-2/xy+2 có giá trị là số nguyên. Giúp mik ik