Tính nhanh
1/5+1/10+1/20+1/40+...+1/1280
tính nhanh:1/5+1/10+1/20+1/40+........+1/1280
1/5 + 1/5 - 1/10 + 1/10 - 1/20 + 1/20 - 1/40 + ... + 1/640 - 1/1280
= 1/5 + 1/5 - 1/1280 = 511/1280
tính nhanh 1/5+1/10+1/20+1/40+...+1/1280
tính nhanh 1/5+1/10+1/20+1/40+...+1/1280
tính nhanh
1/5+1/10+1/20+1/40+1/...+1/1280
B=1/5+1/10+1/20+1/40+...+1/1280 tính nhanh.
giup minh voi nhe!!!!!!
Tham khảo ở phần Câu hỏi tương tự bạn nhé :
Câu hỏi của Trịnh Thúy An - Toán lớp 5 - Học toán với OnlineMath
\(B=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(B=1\cdot\frac{1}{5}+\frac{1}{2}\cdot\frac{1}{5}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{8}\cdot\frac{1}{5}+...+\frac{1}{256}\cdot\frac{1}{5}\)
\(B=\frac{1}{5}\cdot\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Rightarrow2A-A=2-\frac{1}{256}\)
\(A=2-\frac{1}{256}\)
Thay A vào B
có: \(B=\frac{1}{5}.\left(2-\frac{1}{256}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)
\(B=\frac{1}{5}+\frac{1}{10}+..+\frac{1}{1280}\)
\(\Rightarrow B=\frac{1}{5}+\frac{1}{5}.\frac{1}{2}+...+\frac{1}{5}.\frac{1}{256}\)
\(\Rightarrow B=\frac{1}{5}(1+\frac{1}{2}+...+\frac{1}{256})\)
ĐẶT \(A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{128}\)
\(\Rightarrow2A-A=(2+1+...+\frac{1}{128})-(1+\frac{1}{2}+...+\frac{1}{256})\)
\(\Rightarrow A=2-\frac{1}{256}\)
\(\Rightarrow A=\frac{511}{256}\)
\(\Rightarrow B=\frac{511}{1280}\)
1\5+1\10+1\20+1\40+….+1\1280
A = \(\dfrac{1}{5}+\dfrac{1}{10}+...+\dfrac{1}{1280}\)
= \(\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{20}+...+\dfrac{1}{640}-\dfrac{1}{1280}\)
= \(\dfrac{2}{5}-\dfrac{1}{1280}=\dfrac{511}{1280}\)
Giải:
\(\dfrac{1}{5}+\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{40}+...+\dfrac{1}{1280}\)
\(=\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{40}+...+\dfrac{1}{640}-\dfrac{1}{1280}\)
\(=\dfrac{2}{5}-\dfrac{1}{1280}\)
\(=\dfrac{511}{1280}\)
1/5+1/10+1/20+1/40+......+1/1280
\(\dfrac{1}{5}+\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{40}+.......+\dfrac{1}{1280}\)
\(=\dfrac{1}{5}+\dfrac{1}{5.2}+\dfrac{1}{5.4}+\dfrac{1}{5.8}+.....+\dfrac{1}{5.256}\)
\(=\dfrac{1}{5}+\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+......+\dfrac{1}{2^8}\right)\)
Đặt \(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.......+\dfrac{1}{2^8}\)
\(2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^7}\)
\(2A-A=2-\dfrac{1}{2^3}\)
Thay A vào ta được :
\(\dfrac{1}{5}.A=\dfrac{1}{5}.\left(2-\dfrac{1}{2^8}\right)=\dfrac{511}{1280}\)
1/5 + 1/10 + 1/20 + 1/40 + .... +1/1280
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\frac{1}{5}\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(=\frac{\frac{1}{5}\left(1-\frac{1}{2^9}\right)}{\left(1-\frac{1}{2}\right)}\)
\(=\frac{2}{5}\left(1-\frac{1}{2^9}\right)\)
\(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1280}\)
\(=\frac{1}{5}\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)
Đặt \(A=1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)
\(2A=2+1+...+\frac{1}{2^7}\)
\(2A-A=\left(2+1+...+\frac{1}{2^7}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)
\(A=2-\frac{1}{2^8}\).Thay A vào đc: \(\frac{1}{5}\cdot\left(2-\frac{1}{256}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)
C= 1/5+1/10+1/20+1/40+1/80+...........+1280
C = \(\frac{1}{5}\)+\(\frac{1}{10}\)+\(\frac{1}{20}\)+\(\frac{1}{40}\)+\(\frac{1}{80}\)+........+\(\frac{1}{1280}\)
2C = 2 . ( \(\frac{1}{5}\)+\(\frac{1}{10}\)+.......+\(\frac{1}{1280}\))
2C = \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\)
2C-C = ( \(\frac{2}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{10}\)+......+\(\frac{1}{1280}\)) - (\(\frac{1}{5}\)+\(\frac{1}{10}\)+.....+\(\frac{1}{1280}\))
C . ( 2-1) = \(\frac{2}{5}\)
C = \(\frac{2}{5}\)
Vậy C = \(\frac{2}{5}\)
\(C=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+........+\frac{1}{1280}\)
\(\Rightarrow2C=2\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow2C=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+.............+\frac{1}{1280}\)
\(\Rightarrow2C-C=\left(\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+............+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+...........+\frac{1}{1280}\right)\)
\(\Rightarrow C=\frac{2}{5}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{512}{1280}-\frac{1}{1280}\)
\(\Rightarrow C=\frac{511}{1280}\)
Vậy C = \(\frac{511}{1280}\)