cong phan thuc
x2+2/x2+4+5/x+2
cong phan thuc
a)x2+2/x2+4+5/x+2
b)x+y/2+x+2/2x2+4
c)8/(x2+3)(x2-1)+2/x2+3+1/X+1
c: \(=\dfrac{8}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x^2+3\right)\left(x-1\right)}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x-1}\)
cong phan thuc
8/(x2+3)+7/x
\(\dfrac{8}{x^2+3}+\dfrac{7}{x}=\dfrac{8x}{\left(x^2+3\right).x}+\dfrac{7\left(x^2+3\right)}{\left(x^2+3\right).x}=\dfrac{7x^2+28x+21}{x\left(x^2+3\right)}\)
cho pt: x^2-12x+4=0 c hai nghiem phan biet x1,x2. Khong giai pt, hay tinh gia tri cua bieu thuc: T=x1^2+x2^2/canx1+can x2cho pt: x^2-12x+4=0 c hai nghiem phan biet x1,x2. Khong giai pt, hay tinh gia tri cua bieu thuc: T=x1^2+x2^2/canx1+can x2
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
cong phan thuc
8/(x2+3)(x2-1)+2/x2+3+1/X+1
phan tich da thuc thanh phan tu x mu 4 cong x mu 2 cong 1
x4+x2+1
=(x2)2+2x2+1-2x2+x2
=(x2+1)2-2x2+x2
= (x² + 1)² − x²
= (x² + x+ 1 )(x² − x+ 1 )
\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2.x^2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x^2+\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\)
cong phan thuc
x+y/2+x+2/2x2+4
x+\(\dfrac{y}{2}\)+x+\(\dfrac{2}{2}\)x2+4
=2x+\(\dfrac{4+y}{2}\)+4
cho x va y la hai dai luong ti le thuan, biet x1 va y1; x2 va y2 la 2 cap gia tri tuong ung.Biet x1 + x2=-1 va y1 + y2=-5. Hoi hai dai luong x va y lien he voi nhau theo cong thuc nao?
ba phan thuc sau co bang nhau khong?
x^2-2x-3/x2+x ;x-3/x ;x^2 -4x+3/ x^2-x
Ta có biến đổi sau :
\(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x^2+x-3x-3}{x\left(x+1\right)}=\dfrac{x\left(x+1\right)-3\left(x+1\right)}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}\left(1\right)\)Tương tự , ta có :
\(\dfrac{x^2-4x+3}{x^2-x}=\dfrac{x^2-x-3x+3}{x\left(x-1\right)}=\dfrac{x\left(x-1\right)-3\left(x-1\right)}{x\left(x-1\right)}=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}=\dfrac{x-3}{x}\left(2\right)\)Do đó , ba phân thức bằng nhau
cho biet xy la 2 dai luong ti le thuan viet cong thuc lien he giua x va y biet.a)2x1-3x2=42,5,3y1-3y2=-8,5.b)2y1+3y1=22,x2=4,y2=16