Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRUC LE
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 21:52

c: \(=\dfrac{8}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x^2+3\right)\left(x-1\right)}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x-1}\)

TRUC LE
Xem chi tiết
ILoveMath
10 tháng 12 2021 lúc 17:46

\(\dfrac{8}{x^2+3}+\dfrac{7}{x}=\dfrac{8x}{\left(x^2+3\right).x}+\dfrac{7\left(x^2+3\right)}{\left(x^2+3\right).x}=\dfrac{7x^2+28x+21}{x\left(x^2+3\right)}\)

Ngo Phuong Anh
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
5 tháng 6 2021 lúc 22:44

Ta có: \(\Delta'=32>0\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)

Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\) 

 

TRUC LE
Xem chi tiết
hoang trung nguyen
Xem chi tiết
Việt Ngô
4 tháng 8 2016 lúc 20:45

x4+x2+1

=(x2)2+2x2+1-2x2+x2

=(x2+1)2-2x2+x2 

= (x² + 1)² − x² 

= (x² + x+ 1 )(x² − x+ 1 )

 

Nguyễn Hải Anh Jmg
4 tháng 8 2016 lúc 20:59

\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2.x^2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x^2+\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\)

TRUC LE
Xem chi tiết
Trường Nguyễn Công
10 tháng 12 2021 lúc 19:07

x+\(\dfrac{y}{2}\)+x+\(\dfrac{2}{2}\)x2+4
=2x+\(\dfrac{4+y}{2}\)+4

Black Otaku
Xem chi tiết
Nguyen An
Xem chi tiết
Phùng Khánh Linh
7 tháng 11 2017 lúc 17:51

Ta có biến đổi sau :

\(\dfrac{x^2-2x-3}{x^2+x}=\dfrac{x^2+x-3x-3}{x\left(x+1\right)}=\dfrac{x\left(x+1\right)-3\left(x+1\right)}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x-3\right)}{x\left(x+1\right)}=\dfrac{x-3}{x}\left(1\right)\)Tương tự , ta có :

\(\dfrac{x^2-4x+3}{x^2-x}=\dfrac{x^2-x-3x+3}{x\left(x-1\right)}=\dfrac{x\left(x-1\right)-3\left(x-1\right)}{x\left(x-1\right)}=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}=\dfrac{x-3}{x}\left(2\right)\)Do đó , ba phân thức bằng nhau

MIN SUGA
Xem chi tiết