cho a/c = c/b. CMR: (b^2-a^2)/(a^2+c^2)= (b-a)/a
a, Cho a/b = c/d . CMR : a+b/2b = c+d/2d
b, Cho a/c = c/b . CMR : a^2+c^2 / b^2+c^2 = a/b
c, Cho b^2 = ac ( a , b , c # 0 ) . CMR :
a/c = ( a + 2012b )^2 / ( c + 2012c )^2
d, Cho a/b = c/d . CMR :
5a + 3b / 5a - 3b = 5c + 3d / 5c - 3d
MỌI NGƯỜI LM ĐC CÂU NÀO THÌ LM NHA !
1)Rút gọn biểu thức
a)(a+b-c)^2+(a-b+c)^2-2(b-c)^2
b)(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
c)(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-c-b)^2
2)CMR:(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz) với x,y,z khác 0 thì x/a=b/y=c/z
3)Cho (a+b+c)^2=3(a^2+b^2+c^2).CMR a=b=c
4)Cho (a+b+c)^2=3(ab+bc+ca).CMR a=b=c
Bài 1: Cho a2 + b2 + c2 = ab + bc + ca và a+b+c = 9. CMR a=b=c=3
Bài 2: Cho a2 + b2 + c2 + 3 = 2(a+b+c). CMR a=b=c=1
Bài 3: Cho (a+b+c)2 = 3(a+b+c). CMR a=b=c
Bài 4: Cho (a-b)2 + (b-c)2 + (c-a)2 = (a+b-2c)2 + (b+c-2a)2 + (c+a-2b)2. CMR a=b=c
B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Bài 3:
Áp dụng BĐT Bunhiacopxky:
$2=(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a+b\leq \sqrt{2}$
$(a\sqrt{1+a}+b\sqrt{1+b})^2\leq (a^2+b^2)(1+a+1+b)$
$=2+a+b\leq 2+\sqrt{2}$
$\Rightarrow a\sqrt{1+a}+b\sqrt{1+b}\leq \sqrt{2+\sqrt{2}}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$
a, Cho a+b+c=0 CMR:\(a^3\)+\(a^2c-abc+b^2c+b^3=0\)
b, Cho 2(a+1)(b+1)=(a+b)(a+b+2) CMR:\(a^2+b^2=2\)
c, Cho \(a^2+c^2=2b^2\)CMR;
(a+b)(a+c)+(c+a)(c+b)=2(b+a)(b+c)
a. \(a^3+a^2c-abc+b^2c+b^3\)
<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)
<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)
<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)
<=> \(a^2+b^2=2\)=> đpcm
a. a^3+a^2c-abc+b^2c+b^3a3+a2c−abc+b2c+b3
<=> \left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)(a3+b3)+c(a2−ab+b2)
<=> (\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)(a+b)(a2−ab+b2)+c(a2−ab+b2)
<=> \left(a+b+c\right)\left(a^2-ab+b^2\right)(a+b+c)(a2−ab+b2)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> 2\left(ab+a+b+1\right)=2(ab+a+b+1)=a^2+ab+2a+ab+b^2+2ba2+ab+2a+ab+b2+2b
<=> 2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b2ab+2a+2b+2=a2ab+2a+ab+b2+2b
<=> a^2+b^2=2a2+b2=2=> đpcm
Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d
Cmr: a+b/b=c+d/d
Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.
Cmr: a/a+b=c/c+d
Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)
Cmr a/b=c/d
Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr ac/bd=a^2+c^2 /b^2+d^2
Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d
Cmr: (a-b)^2/(c-d)^2=ab/cd
Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d
Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014
Câu 7:cho a/c=c/d với a,b,c khác 0
Cmr a/b=a^2+c^2/b^2+d^2
Câu 8: cho a/c=c/d với a,b,c khác 0
Cmr b-a/a=b^2-a^2/a^2+c^2
Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0
Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d
Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko
1) Cho a, b, c ∈ [0;1] và a + b + c = 2. CMR ab + bc + ca ≥ 2abc + \(\dfrac{20}{27}\)
2) Cho a, b, c ∈ [1;3] và a + b + c = 6. CMR a3 + b3 + c3 ≤ 36
3) Cho các số dương a, b, c, d thoả mãn a + b + c + d = 4. CMR \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+d^2}+\dfrac{d}{1+a^2}\) ≥ 2
1.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)
Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)
\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)
\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)
\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)
\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)
2.
Đặt \(\left(a;b;c\right)=\left(x+1;y+1;z+1\right)\Rightarrow\left\{{}\begin{matrix}x;y;z\in\left[0;2\right]\\x+y+z=3\end{matrix}\right.\)
Ta có: \(P=\left(x+1\right)^3+\left(y+1\right)^3+\left(z+1\right)^3\)
\(P=x^3+y^3+z^3+3\left(x^2+y^2+z^2\right)+12\)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\Rightarrow x\ge1\)
\(\Rightarrow\left\{{}\begin{matrix}y^3+z^3=\left(y+z\right)^3-3yz\left(y+z\right)\le\left(y+z\right)^3\\y^2+z^2=\left(y+z\right)^2-2yz\le\left(y+z\right)^2\end{matrix}\right.\)
\(\Rightarrow P\le x^3+\left(3-x\right)^3+3x^2+3\left(3-x\right)^2+12\)
\(\Rightarrow P\le15x^2-45x+66=15\left(x-1\right)\left(x-2\right)+36\le36\)
(Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\))
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(1;2;3\right)\) và các hoán vị
a) Cho a2 + b2 + c2+3 = 2.(a + b + c). Cmr: a = b = c =1
b) Cho (a + b + c)2 = 3.(ab + bc + ac). Cmr: a = b = c
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
cho a^2/b^2 +b^2/c^2 +c^2/a^2 = a/c +c/b +b/a cmr a=b=c
áp dụng bất đẳng thức côsi cho hai số dương
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\frac{a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{c}{b}\)
cộng vế theo vế
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
dấu "=" xảy ra khi \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{a^2}\Leftrightarrow a=b=c\)
cho a/c=c/b . CMR : a, a/b = ( a^2 + c^2)/(b^2+c^2)
b, ( b-a )/a = ( b^2 - a^2 )/(a^2 + c ^2 )
Đặt:
\(\dfrac{a}{c}=\dfrac{c}{b}=k\Rightarrow\left\{{}\begin{matrix}a=ck\\c=bk\\a=bk^2\end{matrix}\right.\)
\(\dfrac{a}{b}=\dfrac{bk^2}{b}=k^2\)
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{ck^2+bk^2}{b^2+c^2}=\dfrac{k^2\left(c^2+b^2\right)}{b^2+c^2}=k^2\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a^2+c^2}{b^2+c^2}\)
\(\Rightarrowđpcm\)
Tương tự