Tim GTLN cua xyz(x+y)(y+z)(z+x) voi x,y,z \(\ge\)0 va x+y+z=1
cho x,y,z>0 va xyz \(\ge\)1 ,tim min
\(x^3+y^3+z^3+\frac{2z}{x+y}+\frac{2x}{y+z}+\frac{2y}{z+x}\)
Em thử làm, sai thì thôi nha!
Ta có: \(x^3+y^3+z^3+2\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)
Áp dụng BĐT AM-GM và BĐT Nesbitt ta có:
\(VT\ge3\sqrt[3]{\left(xyz\right)^3}+2.\frac{3}{2}\ge3+3=6\)
Đẳng thức xảy ra khi x = y = z = 1.
Vậy.....
Is it right???
Cho x,y,z>0 va xyz=1. Tim Min cua \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho x,y,z la cac so thuc thoa x+y+z=0, x+1>0, y+1>0, z+1>0. tim GTLN cua P=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}\)
cho x,y,z,t la cac so duong. tim GTNN cua A=\(\frac{x-t}{t+y}+\frac{t-y}{y+z}+\frac{y-z}{z+x}+\frac{z-x}{x+t}\)
với x,y,z>0 và \(x+y+z\ge\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
chứng minh đẳng thức \(x+y+z\ge\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\)
\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)
\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)
\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)
Tìm GTLN của:
\(A=xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\) với x, y, z\(\ge\) 0; \(x+y+z=1\)
Áp dụng bất đẳng thức AM - GM:
\(A=xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\le\left(\frac{x+y+z}{3}\right)^3.\left(\frac{x+y+y+z+z+x}{3}\right)^3\)
\(=\left(\frac{1}{3}\right)^3.\left(\frac{2}{3}\right)^3=\frac{8}{729}\)
\(Max_A=\frac{8}{729}\Leftrightarrow x=y=z=\frac{1}{3}\)
cho x+y+z=1 và x,y,z>0. tìm GTLN của A=xyz(x+y)(y+z)(z+x)
Cho x,y,z la cac so duong va x+y+z =1 .Tim GTLN cua M =xy+yz+zx
Cho x,y,z la cac so khong am va x+y+z=1.Tim GTLN cua M=xy+yz+zx
\(x+z+y=1\Leftrightarrow\left(x+y+z\right)^2=1\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3\left(xy+yz+zx\right)=1\Rightarrow M_{max}=\frac{1}{3}.\text{Dâu "=" xay ra }\Leftrightarrow x=y=z=\frac{1}{3}\)
Đơn giản hơn:
Áp dụng bđt quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Ta có: \(M\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
Đẳng thức xảy ra khi x = y = z =1/3
cho x^2+y^2+z^2=5/2 va x,y,z>0 cm 1/x+1/y<1/xyz+1/z\(cho x^2+y^2+z^2=5/2 va x,y,z>0 cm 1/x+1/y<1/xyz+1/z\)