giải hệ phương trình:
\(x^2y^2-2x+y^2=0\) và \(2x^2-4x+3+y^3=0\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-y^3+2x^2+4y^2+5-0\\x^2+2y^2+4x-13y+7=0\end{matrix}\right.\)
giải hệ phương trình:\(\hept{\begin{cases}2x^2+4x+y^3+3=0\\x^2y^3+y=2x\end{cases}}\)
Ta có: \(\hept{\begin{cases}2x^2+4x+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{cases}}\)
Thay (2) vào (1) ta có:
\(2x^2+2.2x+y^3+3=0\)
\(\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\)
\(\Leftrightarrow2x^2\left(y^3+1\right)+\left(2y+2\right)+\left(y^3+1\right)=0\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)=0\)
Dễ chứng minh \(\left(2x^2y^2-2x^2y+2x^2+y^2-y+3\right)>0\)
\(\Rightarrow y+1=0\)
\(\Rightarrow y=-1\)
Thay vào có x=-1
Giải hệ phương trình sau : \(\hept{\begin{cases}x^2y^2-2x+y^2=0\\2x^2-4x+y^3+3=0\end{cases}}\)
a . Giải phương trình :\(x^2+9x+20=2\sqrt{3x+10}\).
b . Giải hệ phương trình : \(\hept{\begin{cases}x^2y^2-2x+y^2=0\\2x^2-4x+3=-y^3\end{cases}}\).
a. ĐKXĐ: \(x\ge-\frac{10}{3}\)
Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)
Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)
Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)
TH1: x = - 3 (tm)
Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)
Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)
Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)
\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)
Vậy pt có 1 nghiệm duy nhất x = - 3.
b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:
\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)
\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)
\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)
Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)
Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)
\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)
Thế vào pt (1) : Vô nghiệm.
Vậy (x; y) = (1; -1)
Giải hệ phương trình \(\hept{\begin{cases}\frac{3+2x-y}{2x-y}-\frac{6}{x+y}=0\\\frac{1-4x+2y}{2x-y}-\frac{1+2x+2y}{x+y}=0\end{cases}}\)
Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)
Gỉai hệ phương trình\(\hept{\begin{cases}x^2y^{2018}-2x+y^2=0\\2x^2-4x+3+y^{2019}=0\end{cases}}\)
a) Giải bất phương trình:
\(\sqrt{x^2+2x}+\sqrt{x^2+3x}\) ≥ \(2x\)
b) Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+6x^2y+9xy^2+y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{matrix}\right.\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
Gỉai hệ phương trình \(\hept{\begin{cases}x^2y^{2018}-2x+y^2=0\\2x^2-4x+3+y^{2019}=0\end{cases}}\)
giải hệ phương trình x^2+2y=-11 và y^4+4(2x-3)y^2-32y-48x-140=0
Từ \(x^2+2y=-11\Rightarrow y=-\frac{x^2}{2}-\frac{11}{2}\)
\(\left(2\right)\Leftrightarrow\left(-\frac{x^2}{2}-\frac{11}{2}\right)^4+4(2x-3)\left(-\frac{x^2}{2}-\frac{11}{2}\right)^2-32\left(-\frac{x^2}{2}-\frac{11}{2}\right)-48x-140=0\)
\(\Leftrightarrow\frac{x^8}{16}+\frac{11x^6}{4}+2x^5+\frac{339x^4}{8}+44x^3+\frac{1131x^2}{4}+194x+\frac{9409}{16}=0\)
Tới đây tìm được \(Min=\frac{1}{48}\left(4225+\sqrt[3]{1972230880321-24752089344\sqrt{4317}}+\sqrt[3]{1972230880321+24752089344\sqrt{4317}}\right)>0\)
Hay pt >0 tức vô nghiệm :v
Làm sao để tìm min = 1/48 giải rùm mình từ đoạn đó đc không