Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uyên Nguyễn
Xem chi tiết
Toàn Quyền Nguyễn
15 tháng 1 2017 lúc 20:34
Ta có: 1.3.5...(2n - 1) = { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) = (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] = {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) => 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương => [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương => [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) => [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 
dam quang tuan anh
15 tháng 1 2017 lúc 20:30

Ta có: 1.3.5...(2n - 1) 
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 

Erika Alexandra
Xem chi tiết
dream XD
Xem chi tiết
Ngoc Anh Thai
28 tháng 3 2021 lúc 11:47

a) Vế trái  \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)

               \(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)

b) Vế trái

 \(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)

              

Erika Alexandra
Xem chi tiết
Phương Trâm
15 tháng 1 2017 lúc 20:37

Bạn viết đề bài ra rõ ràng lại hộ mình cái

Nguyễn Quang Tâm
Xem chi tiết
Vũ Thị Thanh Thảo
Xem chi tiết
Thanh Tùng DZ
24 tháng 5 2018 lúc 16:56

a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)

\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)

\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)

Bùi Xuân Mai
Xem chi tiết
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
J Cũng ĐC
27 tháng 12 2015 lúc 22:35

a) Ta có:

   \(\frac{1.3.5...39}{21.22.23...40}=\frac{1.3.5.7.11.13.15.17.19}{22.24.26.28.30.32.34.36.38}\)=\(\frac{1.3.5.7.9.11.13.15.17.19}{2.11.2^3.3.2.13.2^2.7.2.15.2^5.2.17.2^2.9.2.19.2^3.5}\)=\(\frac{1}{2.2^3.2.2^2.2.2^5.2.2^2.2.2^3}\)=\(\frac{1}{2^{1+3+1+2+1+5+1+2+1+3}}\)=\(\frac{1}{2^{20}}\)

            Vậy \(\frac{1.3.5...39}{21.22.23...40}\)\(\frac{1}{2^{20}}\) 

Hồ Sỹ Anh Tuấn
27 tháng 12 2015 lúc 22:01

tick cho minh

 

Đào Thu Ngọc
27 tháng 12 2015 lúc 22:13

tick cho mk hết âm đi mk chân thành cẳm ơn