Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ai làm đc mk bái làm sư phụ và TICK luôn. Nhanh lên nhé, mai mk phải nộp rùi.
Chứng tỏ rằng: 1.3.5...(2n-1)/(n+1).(n+2).(n+3)...2n=1/2^n với nϵN*
Chứng minh rằng:
a)\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)với n thuộc N*
Chứng minh rằng:
1.3.5...39/21.22.23...40=1/2.2.2.2...2 (20 chữ số 2)
1.2.3...(2n-1)/(n+1)(n+2)(n+3)...2n=1/2.2 với n là phần tử của N*
Chứng minh rằng:
a,\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b,\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)
Biết rằng n thuộc N*
Chứng minh rằng :
a)\(\frac{1.3.5....9}{21.22.23....40}\)=\(\frac{1}{2^{20}}\)
b)\(\frac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)=\(\frac{1}{2^2}\)
chứng minh rằng
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}\)=\(\frac{1}{2^n}\)
Chứng minh rằng với mọi số tự nhiên n, ta có: (n + 1)(n + 2)...(n + n) = \(^{2^n}\).1.3.5...(2n -1)