giải pt bằng phương pháp liên hợp:
\(\sqrt[3]{x+24}+\sqrt{12-x}=6\)
Giải pt bằng phương pháp nhân liên hợp:
a. \(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)
b. \(3\left(2+\sqrt{x-2}\right)=2x+\sqrt{x+6}\)
a. ta có
\(x^2+2x-1+4x+2=\left(2x+1\right)\sqrt{x^2+2x+3}\)
\(\Leftrightarrow x^2+2x-1=\left(2x+1\right)\left[\sqrt{x^2+2x+3}-2\right]\Leftrightarrow x^2+2x-1=\left(2x+1\right).\frac{x^2+2x-1}{\sqrt{x^2+2x+3}+2}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+2x+3}+2=2x+1\\x^2+2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+2x+3}=2x-1\\x=-1\pm\sqrt{2}\end{cases}}}\)
với \(\sqrt{x^2+2x+3}=2x-1\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2+2x+3=4x^2-4x+1\end{cases}\Leftrightarrow x=\frac{3+\sqrt{15}}{3}}\)
b.\(3\sqrt{x-2}-\sqrt{x+6}=2x-6\Leftrightarrow\frac{8\left(x-3\right)}{3\sqrt{x-2}+\sqrt{x+6}}=2\left(x-3\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\3\sqrt{x-2}+\sqrt{x+6}=4\end{cases}}\)
với \(3\sqrt{x-2}+\sqrt{x+6}=4\Leftrightarrow10x-12+6\sqrt{\left(x-2\right)\left(x+6\right)}=16\)
\(\Leftrightarrow3\sqrt{x^2+4x-12}=14-5x\) xét điều kiện rồi bình phương thôi bạn nhé
GIẢI PT BẰNG PHƯƠNG PHÁP LIÊN HỢP. GIÚP MIK VS >.<~
1) \(\sqrt{2x^2+11x+15}\) + \(\sqrt{x^2+2x-3}\)= x + 6
2) \(\frac{2x-1}{\sqrt{4x+1}}\) + \(\sqrt{x-1}\)= \(\sqrt{3x+2}\)
giải pt sau bằng biểu thức liên hợp:
\(\sqrt{2x-3}-\sqrt{x}=2x-6\) 6
Giải PT: \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)
Bài này chắc ko cần liên hợp gì đó nhỉ ạ? Em thử thôi!
ĐK: \(x\le12\)
Đặt \(\sqrt[3]{24+x}=a;\sqrt{12-x}=b\Rightarrow a^3+b^2=36\)
Kết hợp đề bài ta có hệ pt \(\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36=\left(a+b\right)^2\end{matrix}\right.\)
Xét pt thứ hai của hệ \(\Leftrightarrow a^3+b^2-a^2-2ab-b^2=0\)
\(\Leftrightarrow a^3-a^2-2ab=0\Leftrightarrow a\left(a^2-a-2b\right)=0\)
*)Với a = 0 thì x = -24 (TM)
*)Với \(a^2-a-2b=0\Rightarrow a^2-a=2b\)
Pt thứ nhất của hệ tương đương với: 2a + 2b = 12
Thay 2b bởi a2 - a ta được PT thứ nhất của hệ \(\Leftrightarrow a^2+a-12=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)
+)a = 3 suy ra x = 3 (TM)
+)a = -4 suy ra \(x=-88\) (TM) (mấy cái này chị từ giải rõ ra bằng cách thay vô đk rồi lập phương lên thôi nha, em lười viết lắm)
Vậy tập hợp nghiệm của PT: S = {-24;3;-88}
cho phương trình \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
giải bằng phương pháp nhân một lượng liên hợp nhá
giải xong mink tích
Bạn tự xét ĐKXĐ nhé ^^
Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)-\left[\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right]+\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)=0\)
\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-3-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-2\right)\left(x-1\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x+3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)Tới đây bạn tự làm tiếp ^^
Dài quá ^^
Giải PT: \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)
giải pt \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)
Giải PT : \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)
Trần Đức Thắng bảo ngay là đặt mà, god ****cho Ngu Người
Điều kiện: x \(\le\)12
Đặt a = \(\sqrt[3]{24+x}\); b = \(\sqrt{12-x}\) ( b > =0)
=> a3 + b2 = 36 (*)
PT <=> a + b = 6 => b = 6 - a
Thay vào (*) <=> a3 + (6 - a)2 = 36
<=> a3 + a2 - 12a = 0
<=> a.(a2 + a - 12)= 0
<=> a(a+ 4)(a - 3) = 0
<=> a = 0 hoặc a = 3 hoặc a = -4
a = 0 => x ....
cho phương trình \(2\sqrt{x^2-7x+10}=x+\sqrt{x^2-12x+20}\)
giải bằng phương pháp nhân một lượng liên hợp nhá
giải xong mink tick
Giải bằng liên hợp đúng sở trường của mình rồi ^^
Ta có : \(2\sqrt{x^2-7x+10}=x+\sqrt{x^2-12x+20}\) (ĐKXĐ : \(\orbr{\begin{cases}0\le x\le2\\x\ge10\end{cases}}\) )
\(\Leftrightarrow2\left(\sqrt{x^2-7x+10}-2\right)-\left(\sqrt{x^2-12x+20}-3\right)-\left(x+1\right)=0\)
\(\Leftrightarrow2\left(\frac{x^2-7x+10-4}{\sqrt{x^2-7x+10}+2}\right)-\left(\frac{x^2-12x+20-9}{\sqrt{x^2-12x+20}+3}\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x-6\right)}{\sqrt{x^2-7x+10}+2}-\frac{\left(x-1\right)\left(x-11\right)}{\sqrt{x^2-12x+20}+3}-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2x-12}{\sqrt{x^2-7x+1}+2}-\frac{x-11}{\sqrt{x^2-12x+20}+3}-1\right)=0\)
Đến đây thì dễ rồi ^^
Mình có nhầm một chút xíu ở dòng 3 và 4 nhé ^^