5xy(2x^3y^2-7xy+3y) (-6x^6+15x^2-4x^4):3x^2 (x^2-y^2-12x+36):(x+y-6)
Chứng minh rằng
a) ( 3x + 2y) (5x - y) - y2 = 15x2 + 7xy- 3y2
b) 2x2 + 5xy + 3y2 = 4x2 - ( x -3y) (2x+y)
c) (x+y) (x-y) - 9y2 = ( x-2y) (x + 5y) - 3xy
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
1/ tìm GTNN
4x^2+y^2-4x-2y+3
X^2+y^2+2*(x-2y)y+6
2 phân tich đa thức thành nhân tử
(x+y)^2-25(x+y)+24
2x^3y-2xy-4xy-2xy
y^2 +3xy+3y^2 (y#0)
(x^2+4x+8)^2-3x(x^2+4x+8) +x^2
x^3-y^3-3x+3y
x^4+6x^2+13x^2+12x+4
BT11: Tìm hiệu A-B biết
\(a,-x^2y+A+2xy^2-B=3x^2y-4xy^2\)
\(b,5xy^2-A-6yx^2+B=-7xy^2+8x^2y\)
\(c,3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y\)
\(d,-6x^2y^3+A-3x^3y^2-B=2x^2y^3-7x^3y\)
\(e,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(f,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
a) x^2+2xy+y^2-16
b) 3x^2+5x-3xy-5y
c) 4x^2-6x^3y-2x^2+8x
d) x^2-4-2xy+y^2
e) x^3-4x^2-12x+27
g) 3x^2-18x+27
h) x^2-y^2-z^2-2yz
k) 4x^2(x-6)+9y^2(6-x)
l)6xy+5x-5y-3x^2-3y^2
a) x^2+2xy+y^2-16
=(x+y)2-16
=(x+y-4)(x+y+4)
b) 3x^2+5x-3xy-5y
=(3x2-3xy)+(5x-5y)
=3x(x-y)+5(x-y)
=(x-y)(3x+5)
c) 4x^2-6x^3y-2x^2+8x
ko bik hoặc sai đề
d) x^2-4-2xy+y^2
=(x-y)2-4
=(x-y+2)(x-y-2)
e) x^3-4x^2-12x+27
=sai đề
g) 3x^2-18x+27
=3(x2-6x+9)
=3(x-3)2
h) x^2-y^2-z^2-2yz
=x2-(y2+z2+2yx)
=x2-(y+z)2
=(x-y-z)(x+y+z)
k) 4x^2(x-6)+9y^2(6-x)
=4x2(x-6)-9y2(x-6)
=(x-6)(4x2-9y2)
=(x-6)(2x-3y)(2x+3y)
l)6xy+5x-5y-3x^2-3y^2
=(5x-5y)+(-3x2+6xy-3y2)
=5(x-y)-3(x2-2xy+y2)
=5(x-y)-3(x-y)2
=(x-y)(5-3(x-y))
=(x-y)(5-3x+3y)
2 Làm tính chia
a) (4x^6-3x^4+x):(-1/2x) ; b)( 2/3x^2y-7xy+x^3y^2) : (-xy)
c) \(_[\)7(x-y)^4+4(x-y)^3\(]\):(y-x)^2 ; d) 6(x-3y)^4:(5x-15y)
e) (x^3+27y^3):2(x+3y)
a: \(=-8x^5+6x^3-2\)
b: \(=-\dfrac{2}{3}x+7-x^2y\)
c: \(=\dfrac{7\left(x-y\right)^4+4\left(x-y\right)^3}{\left(x-y\right)^2}=7\left(x-y\right)^2+4\left(x-y\right)\)
d: \(=\dfrac{6\left(x-3y\right)^4}{5\left(x-3y\right)}=\dfrac{6}{5}\left(x-3y\right)^3\)
a, (2x-y)(4x^2 - 2xy +y^2)
b, (6x^5y^2-9x^4y^3+ 15x^3y^4): 3x^3y^2
c, (2x^3-21x^2+67x-60):(x-5)
5,thực hiện phép tính
1,\(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)
2,\(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)
3,\(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)
4,\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
5,\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)
6,\(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}\)
7,\(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}\)
1, \(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)\(=\frac{4y.y}{11x^2.x^2}.\frac{-3x^2}{2.4y}\)\(=\frac{y}{11x^2}.\frac{-3}{2}=\frac{-3y}{22x^2}\)
2, \(\frac{4x^2}{5y^2}:\frac{6x}{5y}:\frac{2x}{3y}\)\(=\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}\)\(=\frac{2x.2x}{5y.y}.\frac{5y}{3.2x}.\frac{3y}{2x}\)\(=\frac{2x}{y}.\frac{1}{3}.\frac{3y}{2x}\)
\(\frac{2x}{3y}.\frac{3y}{2x}=1\)
3, \(\frac{x^2-4}{3x+12}.\frac{x+4}{2x-4}\)\(=\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}\)\(=\frac{\left(x+2\right)}{3}.\frac{1}{2}=\frac{x+2}{6}\)
4, \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\left(-\frac{2\left(x-2\right)}{x+2}\right)=\frac{5}{4}.\frac{-2}{1}=-\frac{5}{2}\)
5, \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{3}{-\left(x-6\right)}=\frac{x+6}{2\left(x+5\right)}.\frac{-3}{1}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
6, \(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6y}=\frac{\left(x-3y\right)\left(x+3y\right)}{\left(xy\right)^2}.\frac{3xy}{2\left(x-3y\right)}=\frac{x+3y}{xy}.\frac{3}{2}=\frac{3\left(x+3y\right)}{2xy}\)
7, \(\frac{3x^2-3y^2}{5xy}.\frac{15x^2y}{2y-2x}=\frac{3\left(x-y\right)\left(x+y\right)}{5xy}.\frac{5xy.3x}{-2\left(x-y\right)}=\frac{3\left(x+y\right)}{1}.\frac{3x}{-2}=\frac{-9x\left(x+y\right)}{2}\)
1 Phân tích đa thức sau thành phân tử:
a) 3x^2-6x ; b) 18x^2-4x+12
c) 4x^2(2x-y)-12x(2x-y) ; d) 7(x-3y)-2x(3y-x) ; f) 6(x-2y)-3(2y-x)
\(a,3x^2-6x\)
\(=3x\left(x-2\right)\)
\(b,18x^2-4x+12\)
\(=2\left(9x^2-2x+6\right)\)
\(c,4x^2\left(2x-y\right)-12x\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2-12x\right)\)
\(=4x\left(2x-y\right)\left(x-3\right)\)
\(d,7\left(x-3y\right)-2y\left(3y-x\right)\)
\(=7\left(x-3y\right)+2y\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2y+7\right)\)
\(f,6\left(x-2y\right)-3\left(2y-x\right)\)
\(=6\left(x-2y\right)+3\left(x-2y\right)\)
\(=\left(x-2y\right)\left(6+3\right)=9\left(x-2y\right)\)