Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
help me
Xem chi tiết
OOOOOOO PƠ Fuck
Xem chi tiết
Nguyễn Mạnh Tùng
8 tháng 11 2021 lúc 18:45

so 2 phai ko

Khách vãng lai đã xóa
trwsst
16 tháng 10 2022 lúc 8:29

hỏi cô mày ra đáp án liền tao thề:o

Nguyên Trinh Quang
Xem chi tiết

đề bài là -2n+9 là số nguyên tố chứ

Nguyên Trinh Quang
20 tháng 4 2019 lúc 20:08

Nếu vậy thì giải dùm tớ

-2n+9 là số nguyên tố => -2n+9>0=>n<5

mà n tự nhiên =>n\(\in\){1,2,3,4}

Xét n=1=>2n+1=3 không phải scp (loại)

Xét n=2=> 2n+1=5 không phải scp (loại)

Xét n=3=> 2n+1=7 không phải scp (loại)

Xét n=4=> 3n+1=13 không phải scp (loại)

Vậy không có số tự nhiên n t/m đề bài

help me
Xem chi tiết
Akai Haruma
9 tháng 1 2023 lúc 19:04

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

Akai Haruma
9 tháng 1 2023 lúc 19:07

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$

Akai Haruma
9 tháng 1 2023 lúc 19:08

Bài 2:

b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.

Khi đó:

$ab=6x.6y=216$

$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$

$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$

help me
Xem chi tiết
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

locdddd33
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 9:30

a: Gọi d=ƯCLN(2n+2;2n+3)

=>2n+3-2n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

 

HT.Phong (9A5)
13 tháng 8 2023 lúc 9:34

a) Đặt d là ƯCLN(2n+2, 2n+3) 

\(2n+2\text{ ⋮ }d\) và \(2n+3\text{ ⋮ }d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)\text{ ⋮ }d\)

\(\Rightarrow2n+3-2n-2\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

\(\Rightarrow d=1\)

Vậy 2n+2 và 2n+3 là cặp số nguyên tốc cùng nhau 

HT.Phong (9A5)
13 tháng 8 2023 lúc 9:42

b) Đặt d là ƯCLN(2n+1, n+1) 

\(2n+1\text{ ⋮ }d\) và \(n+1\text{ ⋮ }d\)

\(\Rightarrow2n+1\text{ ⋮ }d\) và \(2n+2\text{ ⋮ }d\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)\text{ ⋮ }d\)

\(\Rightarrow2n+2-2n-1\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

\(\Rightarrow d=1\)

Vậy 2n+1 và n+1 là cặp số nguyên tố cùng nhau 

c) Đặt d là ƯCLN(n+1, 3n+4) 

\(n+1\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)

\(\Rightarrow3n+3\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)\text{ ⋮ }d\)

\(\Rightarrow3n+4-3n-3\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

Vậy n+1 và 3n+4 là cặp số nguyên tốc cùng nhau 

Phan Phương Linh
Xem chi tiết
shitbo
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

shitbo
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Phan Phương Linh
21 tháng 11 2018 lúc 20:41

Thank you nha!

Kim Ngân Nguyễn Thị
Xem chi tiết
Suzanna Dezaki
15 tháng 1 2021 lúc 18:33

undefined

Nguyễn Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2023 lúc 13:41

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)