(-3x5+6x2-4x3+5x4):2x2
Thực hiện phép tính - 2 x 5 + 6 x 2 - 4 x 3 : 2 x 2
Cho các đa thức:
f(x)= 2x2 - x5+ 4x3 - 2x + 1
g(x)=4x - 3x2 + 8 - 2x5 + 7x3
h(x)= 1- 2x2 + 4x3 - 3x5 - 7x3
Tính:
a) f(x) + g(x) + h(x) b) f(x) - g(x) + h(x)
c) 2f(x) + 3g(x) d) g(x) - 2h(x)
giúp e với ạ giải chi tiếp giúp e
Bài 4 Cho hai đa thức: P(x) = 8x5 + 7x - 6x2 - 3x5 + 2x2 + 1
Q(x) = 4x5 + 3x - 2x2 + x5 - 2x2 + 8
a/ Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến ?
b/Tính P(x) + Q(x) c/ Tìm x để P(x) =Q(x) ?
a, \(P\left(x\right)=5x^5-4x^2+7x+1;Q\left(x\right)=5x^5-4x^2+3x+8\)
b, \(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)
c, \(P\left(x\right)=Q\left(x\right)\Rightarrow7x+1=3x+8\Leftrightarrow4x=7\Leftrightarrow x=\dfrac{7}{4}\)
a/ \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+1\)
\(=8x^5-3x^5-6x^2+2x^2+7x+1\)
\(=5x^5-4x^2+7x+1\)
\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)
\(=4x^5+x^5-2x^2-2x^2+3x+8\)
\(=5x^5-4x^2+3x+8\)
b/ \(P\left(x\right)=5x^5-4x^2+7x+1\)
+ \(Q\left(x\right)=5x^5-4x^2+3x+8\)
____________________________
\(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)
c/ \(P\left(x\right)=Q\left(x\right)\)
\(\Rightarrow5x^5-4x^2+7x+1=5x^5-4x^2+3x+8\)
\(\Rightarrow7x+1=3x+8\)
\(\Rightarrow4x-7=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Bài 4. Tính tổng và hiệu của các đa thức sau:
a) P(x) = 5x4 + 3x2 - 3x5 + 2x - x2 - 4 +2x5 và Q(x) = x5 - 4x4 + 7x - 2 + x2 - x3 + 3x4 - 2x2
b) H (x) = ( 3x5 - 2x3 + 8x + 9) - ( 3x5 - x4 + 1 - x2 + 7x) và R( x) = x4 + 7x3 - 4 - 4x ( x2 + 1) + 6x
ai giúp mình với
`@` `\text {Ans}`
`\downarrow`
`a)`
Thu gọn:
`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)
`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`
`= -x^5 + 5x^4 + 2x^2 + 2x - 4`
`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)
`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`
`= x^5 - x^4 - x^3 - x^2 + 7x - 2`
`@` Tổng:
`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`
`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`
`= 4x^4 - x^3 + x^2 + 9x - 6`
`@` Hiệu:
`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`
`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`
`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`
`b)`
`@` Thu gọn:
\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)
`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`
`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`
`= x^4 - 2x^3 - x^2 + 15x + 10`
\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)
`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`
`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`
`= x^4 + 3x^3 + 2x - 4`
`@` Tổng:
`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)
`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`
`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`
`= 2x^4 + x^3 - x^2 + 17x + 6`
`@` Hiệu:
`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)
`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`
`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`
`= -5x^3 - x^2 + 13x + 14`
`@` `\text {# Kaizuu lv u.}`
Cho hai đa thức: P(x) = 8x5 + 7x - 6x2 - 3x5 + 2x2 + 15
Q(x) = 4x5 + 3x - 2x2 + x5 - 2x2 + 8
a/ Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến ?
b/ Tìm nghiệm của đa thức P(x) – Q(x) ?
a) P(x) = 5x5 - 4x2 + 7x + 15
Q(x) = 5x5 - 4x2 + 3x + 8
b) Có: P(x) - Q(x) = 4x + 7
P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)
`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`
`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`
`=5x^5 -4x^2 +7x+15`
`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`
`=(4x^5+x^5) +(-2x^2 -2x^2)+3x+8`
`= 5x^5 - 4x^2 +3x+8`
`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`
`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`
`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`
`= 0 + 0 +4x + 7`
`=4x+7`
Câu 1:Thu gọn và tìm bậc của đa thức
A= 2 + 5x2 - 3x3 + 4x2 - 2x - x2 + 6x5
B= 3x5y3 - 4x4y3 + 2x4y3 + 7xy2 - 3x5y3
Câu 2: Thu gọn và sắp xếp theo lũy thừa giảm dần
a) 8x5 - 6x2 + 7x - 3x5 + 2x2 + 15
b) -9 + 5x7 - 6x2 - 11x7 + 7x2 + x5
Câu 1:
A=2+5x²−3x³+4x²−2x−x²+6x5A=2+5x²-3x³+4x²-2x-x²+6x5
A=6x5−3x³+(5x2+4x2−x2)−2x+2A=6x5-3x³+(5x2+4x2-x2)-2x+2
A=6x5−3x3+8x2−2x+2
Bậc của đa thức là bậc 5
...............
B=3x5y3−4x4y3+2x4y3+7xy²−3x5y3
B=(3x5y3−3x5y3)+(−4x4y3+2x4y3)+7xy
B=−2x4y3+7xy2
Bậc của đa thức là bậc 7
................
Câu 2:
a)8x5−6x2+7x−3x5+2x2+
=(8x5−3x5)+(−6x2+2x2)+7x+15
=5x5−4x2+7x+15
..................
b)=-9+5x7-6x2-11x7+7x2+x5
=(5x7-11x7)+x5+(-6x2+7x2)-9
=−6x7+x5+x2−9
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)
a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)
\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)
\(=9x^4+3x^2-x-6\)
Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)
\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)
\(=-x^4-x^3-3x^2+4x+5\)
c) Ta có: M(x)+N(x)
\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)
\(=8x^4-x^3+3x-1\)
Ai đúng, ai sai ?
Khi giải bài tập: "Xét xem đa thức A = 5x4 – 4x3 + 6x2y có chia hết cho đơn thức B = 2x2 hay không ?".
Hà trả lời: "A không chia hết cho B vì 5 không chia hết cho 2".
Lời giải của bạn Hà sai, lời giải của bạn Quang đúng.
Vì 5x4 chia hết cho 2x2;
–4x3 chia hết cho 2x2;
6x2y chia hết cho 2x2
Do đó A = 5x4 – 4x3 + 6x2y chia hết cho 2x2 hay A chia hết cho B.
Chú ý: Đơn thức A chia hết cho đơn thức B nếu tìm được đơn thức Q sao cho A=B.Q
Ví dụ : Cho hai đơn thức A= 2x2y3; B = 7xy
Khi đó với đơn thức thì A=B.Q
Do đó, đơn thức A chia hết cho đơn thức B.