Cho tam giác abc, có ab=ac. gọi h là trung điểm của bc.
a) cmr: ah là tia phân giác của bac
b) trên tia đối của tia ha lấy điểm k sao cho ha= hk. CMR: ck// ab
6. Cho tam giác ABC có AB = AC. Gọi H là trung điểm của BC.
a) CMR: AH là tia phân giác của góc BAC và AH vuông góc BC.
b) Trên tia đối của tia HA lấy điểm K sao cho HK = HA. CMR: CK // AB.
Bài 4: (4đ )Cho tam giác ABC có AB - AC. Gọi H là trung điểm cạnh BC.
a) Chứng minh: AH là tia phân giác của \(\widehat{BAC}\) và
b) AH \(\perp\) BC.
c) Trên tia đối của tia HA lấy điểm K sao cho HK = HA. Chứng minh rằng: CK // AB.
d) Vẽ d \(\perp\) AH tại A. Lấy D\(\in\)d sao cho AD - BC (B và D thuộc hai nữa mặt phẳng đối
nhau có bờ là đường thẳng AH ). Chứng minh rằng C là trung điểm DK.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của \(\widehat{BAC}\)
b: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AH là đường trung trực của BC
hay AH\(\perp\)BC
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của cạnh BC.
a) Chứng minh rằng AH là tia phân giác của góc BAC và AH vuông góc với BC.
b) Trên tia đối của tia AH lấy điểm K sao cho HK = HA. Chứng minh rằng CK song song với AB.
CHO EM XIN CẢ HÌNH NHÉ !
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của cạnh BC.
a) Chứng minh rằng AH là tia phân giác của góc BAC và AH vuông góc với BC.
b) Trên tia đối của tia AH lấy điểm K sao cho HK = HA. Chứng minh rằng CK song song với AB.
a, Xét tam gác ABH và tam giác ACH có:
AB=AC (gt)
BH=CH
AH là cạnh chung
=> tam giác ABH=ACH ( c.c.c)
=> góc BAH = CAH ( hai góc tương ứng )
Vì tam giác ABC là tam giác cân mà AH vừa là trung điểm vừa là tia phân giác thì AH cũng là đường cao của ta giác ABC => AH vuông góc vs BC
b, Xét tam giác vuông ABH và tam giác vuông KCH có :
BH=CH (gt)
HK=HA (gt)
=> tam giác vuông ABH = tam giác vuông KCH ( hai cạnh góc vuông )
=> góc HAB = góc HKC ( hai góc tương ứng )
Vì góc HAB = góc HKC nên CK//AB ( cặp góc sole trong )
Cho tam giác ABC có AB=AC gọi H là trung điểm của cạnh BC
a, chứng minh rằng AH là tia phân giác của góc BAC
b, chứng minh rằng AH vuông góc với BC
C, trên tia đối của HA lấy điểm K sao cho HK=HA. chứng minh rằng CK//AB
a) Xét tam giác ABC có AB = AC => Tam giác ABC cân tại A
=> AH vừa là đường trung tuyến vừa là tia phân giác góc BAC
b) Vì tam giác ABC cân tại A (cmt)
=> AH cũng là đường cao
=> AH vuông góc BC
c) Xét tứ giác ABCK có
H là trung điểm BC (gt)
H là trung điểm AK (gt)
=> Tứ giác ABCK là hình bình hành
=> CK // AB
xét tam giac abc= tam giác ahc có
ab=ac (gt)
hb=hc (gt)
ah canh chung
\(\Rightarrow\)tam giác ahb=tam giác ahc(c.c.c)
Cho tam giác ABC có AB=AC gọi H là trung điểm của cạnh BC
A,chứng minh rằng AH là tia phân giác của góc BAC
B,chứng minh rằng AH vuông góc với BC
C,trên tia đối của HA lấy điểm k sao cho HK=HA, chứng minh CK=AB
a) Xét tam giác AHB và tam giác AHC có :
AB=AC ( gt )
BH = HC ( vì H là trung điểm của cạnh BC )
AH : cạnh chung
do đó tam giác AHB = tam giác AHC ( c.c.c )
suy ra góc BAH = HAC ( 2 góc t/ứ )
nên AH là tia phân giác của góc BAC
b) Có tam giác AHB = tam giác AHC ( c/m trên )
suy ra góc BHA = góc CHA ( 2 góc t/ứ )
mà B , H , C thẳng hàng
suy ra góc BHC là góc bẹt
suy ra góc BHA = góc CHA = 90 độ
nên AH vuông góc với BC
Cho tam giac1ABC có AB=AC. Gọi H là trung điểm của BC
a) Chứng minh AH là tia phân giác của góc BAC và AH vuông với BC
b) Trên tia đối của tia HA lấy điểm K sao cho HK=HA. Chứng minh CK//AB
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi M là trung điểm BC. Trên tia đối của tia HA lấy điểm E sao cho HA=HE. Lấy điểm D sao cho M là trung điểm AD
a, CMR ABCD là hình chữ nhật
b, CMR DB là tia phân giác của góc ADE
c, Gọi I, K lần lượt là hình chiếu của E lên BD, CD. Gọi J là trung điểm ED. CMR H, I, J, K thẳng hàng
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
\(\widehat{BAC}=90^0\)
Do đó: ABDC là hình chữ nhật
b: Xét ΔADE có
M,H lần lượt là trung điểm của AD,AE
=>MH là đường trung bình
=>MH//DE
=>DE vuông góc AE
Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)
=>ABED là tứ giác nội tiếp
=>\(\widehat{BDE}=\widehat{EAB}\)
=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)
=>\(\widehat{BDE}=\widehat{C}\)
mà \(\widehat{ACB}=\widehat{ADB}\)
nên \(\widehat{BDE}=\widehat{ADB}\)
=>DB là phân giác của \(\widehat{ADE}\)
Bài 1 : Cho tam giác ABC có AB = AC . Gọi H là trung điểm của cạnh BC .
a , Chứng minh rằng AH là tia phân giác cảu góc BAC và AH vuông gó với BC .
b , Trên tia đối của tia HA lấy điểm K sao cho HK = HA . Chứng minh rằng CK // AB
dũng có 1 túi bi . dũng lấy ra 1/5 số bi và thêm 2 viên nữa thì được 10 viên .tính số bi trong túi của Dũng ?