Giai phuong trinh
\(\frac{7x}{x-1}-\frac{5x}{x+1}+\frac{x+21}{x^2-1}=0\)
Giai cac phuong trinh :
a\(\frac{12}{x-1}-\frac{8}{x+1}=1\)
b\(\frac{x^3+7x^2+6x-30}{x^3-1}=\frac{x^2-x+16}{x^2+x+1}\)
\(\frac{12}{x-1}-\frac{8}{x+1}=1\left(ĐKXĐ:x\ne\pm1\right)\)
\(\Leftrightarrow\frac{12\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{8\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\) \(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\left(12x+12\right)-\left(8x-8\right)=x^2-1\)
\(\Leftrightarrow12x+12-8x+8=x^2-1\)
\(\Leftrightarrow12x+12-8x+8-x^2+1=0\)
\(\Leftrightarrow-x^2+4x+21=0\)
\(\Leftrightarrow x^2-4x-21=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)-25=0\)
\(\Leftrightarrow\left(x-2\right)^2-5^2=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{7;-3\right\}\)
a thiếu
chỗ x phải có chữ thỏa mãn nữa nha
sorry sora cưng
\(\frac{x^3+7x^2+6x-30}{x^3-1}=\frac{x^2-x+16}{x^2+x+1}\) \(\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\frac{x^3+7x^2+6x-30}{\left(x-1\right)\left(x^2+x+1\right)}=\) \(\frac{\left(x^2-x+16\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}\)
\(\Rightarrow x^3+7x^2+6x-30=x^3-2x^2+17x-16\)
\(\Leftrightarrow9x^2-11x-14=0\)
\(\Leftrightarrow\left(9x^2-11x+\frac{121}{36}\right)-\frac{625}{36}=0\)
\(\Leftrightarrow\left(3x-\frac{11}{6}\right)^2-\left(\frac{25}{6}\right)^2=0\)
\(\Leftrightarrow\left(3x-6\right)\left(3x+\frac{7}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=\frac{-7}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{7}{9}\left(tm\right)\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{2;\frac{-7}{9}\right\}\)
giai phuong trinh : \(\frac{4x}{x^2-5x+6}+\frac{3x}{x^2-7x+6}=6\)
giai phuong trinh
a)\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)
b)\(x^4+5x^3+12x^2+5x+13=0\)
c)\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
a)\(\Leftrightarrow-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=-\frac{3x^2}{x+1}+\frac{3x}{x+1}+3x\)
\(\Rightarrow\frac{3x^2}{x+1}-\frac{4x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}-3x+\frac{1}{x-1}=0\)
\(\Leftrightarrow-\frac{2x\left(3x-5\right)}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow\int^{\frac{x-1}{1}=0}_{\frac{x+1}{1}=0}\Rightarrow x=0\)
=>3x=5
\(\Rightarrow x=\frac{3}{5}\)
vậy \(x=\frac{3}{5}\) hoặc 0
b)x = -(20309916*i+23555105)/9277755;
x = -(985155752*i-35635815)/916564140;
x = (985155752*i+35635815)/916564140;
x = (20309916*i-23555105)/9277755;
c)\(\Leftrightarrow\frac{x+2}{x-1}=\frac{1}{1}\Rightarrow\left(x+2\right)1=\left(x-1\right)1\)
vì \(\left(x+2\right)1\ne\left(x-1\right)1\)
=>x vô nghiệm hoặc đề sai
Giai phuong trinh:
a)\(\frac{4+9x}{9x^21}=\frac{3}{3x+1}-\frac{2}{1-3x}\)
b)\(\frac{2x-3}{x+1}+\frac{x^2-5x+10}{\left(x+1\right)\left(x-3\right)}=\frac{3x-5}{x-3}\)
c)\(\frac{x\left(x+4\right)}{2x-3}=\frac{x^2+4}{2x-3}+1-\frac{2}{3-2x}\)
d)\(\frac{1}{x+2}+\frac{x}{x-3}=1-\frac{5x}{\left(x+2\right)\left(3-x\right)}-\frac{1}{x+2}\)
giai phuong trinh
\(\frac{1}{x-1}-\)\(\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-4}=0\)
\(\left(\frac{1}{x-1}+\frac{1}{x-4}\right)-\left(\frac{1}{x-2}+\frac{1}{x-3}\right)=0\)
\(\Leftrightarrow\frac{x-4+x-1}{\left(x-1\right).\left(x-4\right)}-\frac{x-3-x-2}{\left(x-2\right).\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x-5}{x^2-5x+4}-\frac{2x-5}{x^2-5x+6}=0\)
\(\Leftrightarrow\left(2x-5\right).\left(\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x^2-5x+4=x^2-5x+6\left(loai\right)\end{cases}}}\)
Vậy..
Giai bat phuong trinh
a, \(\frac{2x-5}{3}-\frac{3x-1}{2}< \frac{3-x}{5}-\frac{2x-1}{4}\)
b, \(5x-\frac{3-2x}{2}>\frac{7x-5}{2}+x\)
c, \(\frac{7x-2}{3}-2x< 5-\frac{x-2}{4}\)
d, \(\frac{x}{8}-\frac{x}{4}+\frac{x}{2}>x+5\)
Các bạn ơi giúp mik với đi
mai kiem tra rồi
a,\(\frac{2x-5}{3}-\frac{3x-1}{2}< \frac{3-x}{5}-\frac{2x-1}{4}\)
\(\Leftrightarrow\frac{\left(2x-5\right)20}{60}-\frac{\left(3x-1\right)30}{60}< \frac{\left(3-x\right)12}{60}-\frac{\left(2x-1\right)15}{60}\)
\(\Leftrightarrow40x-100-90x+30< 36-12x-30x+15\)
\(\Leftrightarrow40x-90x+12x+30x< 36+15+100-30\)
\(\Leftrightarrow-8x< 121\)
\(\Leftrightarrow x>-\frac{378}{25}\)
\(\frac{1}{x+1}+\frac{1}{x-1}=0\)
giai phuong trinh
thằng c hó súc sinh.
đây mà là toán lớp 9 thì tao ko còn là đấng cứu thế nữa.
lớp 9 mà ngu đến phải đăng bài lớp 8 à
\(\frac{1}{x+1}+\frac{1}{x-1}=0\) \(\left(ĐKXĐ:x\ne\pm1\right)\)
\(\Leftrightarrow\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{x+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow x-1+x+1=0\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\) (tm)
Vậy phương trình có tập nghiệm \(S=\left\{0\right\}\)
giai phuong trinh \(\frac{1}{x^2-x+1}+\frac{1}{x^2-x+2}+.....+\frac{1}{x^2-x+2016}=2016\)
Giai phuong trinh
\(a,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(b,\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
\(c,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(d,\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(a,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) ĐKXĐ : \(x\ne0;x\ne\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
\(\Leftrightarrow x-3=10x-15\)
\(\Leftrightarrow x-10x=3-15\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow x=\frac{-12}{-9}=\frac{4}{3}\)(TMĐKXĐ)
KL :....
\(b,\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\) ĐKXĐ : \(x\ne0;2\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-x+2=2\)
\(\Leftrightarrow x^2+x=2-2\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
KL ::
\(c,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\) ĐKXĐ : \(x\ne\pm2\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x+x+2+x^2-2x-x+2=2x^2+4\)
\(\Leftrightarrow0x=0\)
KL : PT vô số nghiệm