chứng minh rằng 1/22+1/32+...+1/1002
chứng minh
1/22+1/32+1/42+1/52+...+1/1002 >3/4
Sửa đề: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{100^2}<\frac34\)
Ta có: \(\frac{1}{3^2}<\frac{1}{2\cdot3}=\frac12-\frac13\)
\(\frac{1}{4^2}<\frac{1}{3\cdot4}=\frac13-\frac14\)
...
\(\frac{1}{100^2}<\frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)
Do đó: \(\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{100^2}<\frac12-\frac13+\frac13-\frac14+\cdots+\frac{1}{99}-\frac{1}{100}=\frac12-\frac{1}{100}<\frac12\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{100^2}<\frac14+\frac12=\frac34\)
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Chứng minh rằng: M = 1/22 + 1/32 + 1/42 + ... + 1/n2 < 1
M = 1002– 992 + 982 – 972 + … + 22 – 12;
N = (202+ 182 + 162 + … + 42 + 22) – (192 + 172 + 152 + … + 32 + 12);
P = (-1)n.(-1)2n+1.(-1)n+1.
a:
Số số hạng trong dãy M là:
(1002-12):10+1=100(số)
=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10
\(M=1002-992+982-972+...+22-12\)
\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)
\(=10+10+...+10\)
=10*50=500
b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)
\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)
=10+10+...+10
=10*10=100
A=(1/22 - 1)*(1/32 - 1)*(1/42 - 1)(1/52 - 1)*...*(1/1002 - 1)
So sánh với -1/2
nani "Doge"
A = ( 1/22 + 1 ) ( 1/32 - 1 ) ( 1 / 4 2 - 1 ) ( 1 / 52 - 1 ) ... ( 1 / 1002 - 1 )
mình đang cần gấp giúp mình với : <
Sửa đề: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\ldots\cdot\left(\frac{1}{100^2}-1\right)\)
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\ldots\cdot\left(\frac{1}{100^2}-1\right)\)
\(=\left(\frac12-1\right)\left(\frac13-1\right)\cdot\ldots\cdot\left(\frac{1}{100}-1\right)\left(\frac12+1\right)\left(\frac13+1\right)\cdot\ldots\cdot\left(\frac{1}{100}+1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\ldots\cdot\frac{-99}{100}\cdot\frac32\cdot\frac43\cdot\ldots\cdot\frac{101}{100}\)
\(=-\frac{1}{100}\cdot\frac{101}{2}=-\frac{101}{200}\)
Câu 1: Chứng minh rằng 2 + 1/2 +1/3 + 1/4 +...+ 1/67 > 5
Câu 2: Cho B = 1/22 +1/32 +...+ 1/902
Chứng minh 42/91 < B < 1
Câu 1: Chứng minh rằng 2 + 1/2 + 1/3 + 1/4 +...+ 1/67 > 5
Câu 2: Cho B = 1/22 + 1/32 +... + 1/902
Chứng minh: 42/91 < B < 1
chứng minh rằng
\(\dfrac{1}{1000}+\dfrac{1}{1002}+\dfrac{1}{1004}+...+\dfrac{1}{2000}< \dfrac{1}{2}\)
ủa bạn ơi, lớn hơn 1/2 hay bé hơn 1/2 vậy bạn
1. Chứng minh rằng
A = 2 + 22 + 23 + ... + 2100 chia hết cho 2,3 và 30
2. Chứng minh rằng
B = 3 + 32 + 33 + ... + 32022 chia hết cho 12 và 15
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)