Giải pt: 6x4 + 25x3 + 12x2 - 25x + 6 = 0
Giai cac pt:
a) x4 -3x3 + 4x2 -3x+1 =0
b) 6x4 + 5x3 -38x2 +5x +6 = 0
c) 3x4 -13x3 +16x2 -13x+3 =0
d)6x4 + 7x3 -36x2 - 7x +6 =0
e) 6x4 +25x3 + 12x2 -25x +6 =0
giải pt
6x4+25x3+12x2-25x+6 = 0
\(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow\) \(6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\) \(6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left[6x^2\left(x+3\right)-5x\left(x+3\right)+x+3\right]=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\) \(x+2=0\) hoặc \(x+3=0\) hoặc \(2x-1=0\) hoặc \(3x-1=0\)
\(\Leftrightarrow\) \(x=-2\) hoặc \(x=-3\) hoặc \(x=\frac{1}{2}\) hoặc \(x=\frac{1}{3}\)
Vậy, tập nghiệm của pt là \(S=\left\{-2;-3;\frac{1}{2};\frac{1}{3}\right\}\)
GIAI PT 6x^4 +25x^3+12x^2 -25x +6=0
Ta có: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3-3x^2+16x^2-8x-6x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[3x^2\left(2x-1\right)+8x\left(2x-1\right)-3\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+8x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(3x^2+9x-x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left[3x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)\left(x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{1}{2};-3;\dfrac{1}{3}\right\}\)
Tính giá trị của thức:
M=x10-25x9+25x8-25x7+...-25x3+25x2-25x+25 với x = 24
Lời giải:
$M=(x^{10}-24x^9)-(x^9-24x^8)+(x^8-24x^7)-(x^7-24x^6)+(x^6-24x^5)-(x^5-24x^4)+(x^4-24x^3)-(x^3-24x^2)+(x^2-24x)-(x-24)+1$
$=x^9(x-24)-x^8(x-24)+x^7(x-24)-.....+x(x-24)-(x-24)+1$
$=(x-24)(x^9-x^8+x^7-...+x-1)+1$
$=0.(x^9-x^8+....+x-1)+1=1$
Tính giá trị của biểu thức:
M=x10-25x9+25x8-25x7+...-25x3+25x2-25x+25 với x=24
\(M=x^{10}-25x^9+25x^8-25x^7+...-25x^3+25x^2-25x+25\)
Ta thấy : \(x=24\Rightarrow x+1=25\)
\(\Rightarrow M=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(M=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(\Rightarrow M=1\)
Vậy \(M=1\left(tạix=24\right)\)
M=x
10
−25x
9
+25x
8
−25x
7
+...−25x
3
+25x
2
−25x+25
Ta thấy :
x
=
24
⇒
x
+
1
=
25
x=24⇒x+1=25
⇒
M
=
x
10
−
(
x
+
1
)
x
9
+
(
x
+
1
)
x
8
−
(
x
+
1
)
x
7
+
.
.
.
−
(
x
+
1
)
x
3
+
(
x
+
1
)
x
2
−
(
x
+
1
)
x
+
(
x
+
1
)
⇒M=x
10
−(x+1)x
9
+(x+1)x
8
−(x+1)x
7
+...−(x+1)x
3
+(x+1)x
2
−(x+1)x+(x+1)
M
=
x
10
−
x
10
−
x
9
+
x
9
+
x
8
−
x
8
−
x
7
+
.
.
.
−
x
4
−
x
3
+
x
3
+
x
2
−
x
2
−
x
+
x
+
1
M=x
10
−x
10
−x
9
+x
9
+x
8
−x
8
−x
7
+...−x
4
−x
3
+x
3
+x
2
−x
2
−x+x+1
⇒
M
=
1
⇒M=1
Vậy
M
=
1
(
t
ạ
i
x
=
24
)
M=1(tạix=24)
1, Giải pt
\(x^4-8x^3+21x^2-24x+9=0\)
2, Giải pt
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
Giải giúp mk vs ạ. Cảm ơn m.n nhìu
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Sử dụng hằng đẳng thức để thực hiện phép chia:
a) ( x 2 - 2x + l) :(x - 1);
b) (8 x 3 +27): (2x + 3);
c) ( x 6 - 6 x 4 + 12 x 2 - 8): (2 - x 2 ).
a) Biến đổi x 2 – 2x + 1 = ( x – 1 ) 2 ; thực hiện chia được kết quả x – 1.
b) Biến đổi 8 x 3 + 27 = (2x + 3)(4 x 2 – 6x + 9); thực hiện phép chia được kết quả 4 x 2 – 6x + 9.
c) Phân thích x 6 – 6 x 4 + 12 x 2 – 8 = ( x 2 – 2)( x 4 – 4 x 2 + 4); thực hiện phép chia được kết quả - x 4 + 4 x 2 – 4.
Giải PT sau
\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\left(x\ge1\right)\)
\(< =>5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
\(< =>30\sqrt{x-1}-15\sqrt{x-1}=36+6\sqrt{x-1}\)
\(< =>9\sqrt{x-1}=36\\ < =>\sqrt{x-1}=4\\ < =>x-1=16\\ < =>x=17\left(tm\right)\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{1}{3}\sqrt{x-1}-\sqrt{x-1}=6\)
=>\(1.5\cdot\sqrt{x-1}=6\)
=>\(\sqrt{x-1}=4\)
=>x-1=16
=>x=17
giải pt: \(^{x^4-10x^3+25x^2-36=0}\)
SUY RA \(x^4+x^3-11x^3-11x^2+36x^2-36=0\)
\(\Leftrightarrow x^3\left(x+1\right)-11x^2\left(x+1\right)+36\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3-11x^2+36x-36\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x-2\right)\left(x+1\right)=0\)
suy ra x=-1 hoặc x=6 hoặc x=3 hoặc x=2
mk làm hơi tắt nhưng vẫn dk k nha