Cho a,b,c là 3 cạnh trong tam giác cm:
(b-c-a)(b-c+a)(b+c-a)(b+c+a) < 0
1. Cho a,b,c là 3 cạnh tam giác sao cho a+b+c=2
CM:a^2+b^2+c^2+2abc < 2
2. Cho a,b,c là 3 cạnh tam giác
CM: B=a^4+b^4+c^4-2a^2.b^2-2b^2.c^2-2c^2.a^2 < 0
3. Cho a,b,c dương biết a,b,c khác nhau
CM: A=a^3+b^3+c^3-3abc > 0
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
cho pt ax^3+(b-a)x^2+(c-b)x-c=0 có 3 nghiệm là 3 cạnh của 1 tam giác. cm (2a-b)/(a+c-b)+a/b >0
cho tam giác ABC có 3 cạnh a,b,c. S là diện tích tam giác cm 4S=(a+b+c)(b+c-a)
cho a, b,c là 3 cạnh của 1 tam giác. cm 4a^2b^2-(a^2+b^2+c^2)>0
cho a,b,c là độ dâì 3 cạnh tam giác. cm
a(b-c)^2+b(c-a)^2+c(a+b)^2>a^3+b^3+c^3
cho a , b , c là độ dài 3 cạnh của 1 tam giác . cm
a. a2 + b2 + c2 < 2.( ab + bc + ca )
b. a/b+c-a + b/a+c-b + c/a+b-c ≥3
** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)
Lời giải:
a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:
$c< a+b\Rightarrow c^2< c(a+b)$
$b< a+c\Rightarrow b^2< b(a+c)$
$a<b+c\Rightarrow a^2< a(b+c)$
$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$
hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)
b)
Áp dụng BĐT Bunhiacopxky:
$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$
$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$
$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$
Mà theo BĐT Cô-si:
$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:
$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$
$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$
Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Lời giải khác của câu b
Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$
$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$
Bài toán trở thành:
Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:
Áp dụng BĐT Cô-si:
\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$
bạn cx z luôn nha Akai Haruma
Cho a,b,c là độ dài 3 cạnh của tam giác . Cm pt sau có nghiệm :
(a^2 + b^2 - c^2)x - 4abx + (a^2 + b^2 - c^2)=0
cho a,b,c là 3 cạnh tam giác : CM : ab/a+b-c + bc/-c+a+b + ac/a-b+c \(\ge\) a+b+c
sửa đề : cho a,b,c là 3 cạnh tam giác : CM : ab/a+b-c + bc/-a+b+c + ac/a-b+c \(\ge\)a+b+c
vì a,b,c là 3 cạnh của 1 tam giác nên a + b - c > 0 ; -a +b + c > 0 ; a - b + c > 0
Đặt x = a + b - c ; y = -a + b + c ; z = a - b + c
Ta có : x + y + z = a + b + c ; a = \(\frac{y+z}{2}\); b = \(\frac{x+z}{2}\); c = \(\frac{x+y}{2}\)
\(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}=\frac{\left(y+z\right).\left(x+z\right)}{4z}+\frac{\left(x+z\right).\left(x+y\right)}{4x}+\frac{\left(x+y\right).\left(y+z\right)}{4y}\)
\(=\frac{1}{4}.\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}+3x+3y+3z\right)\)
\(=\frac{1}{4}.\left[3.\left(x+y+z\right)+\frac{1}{2}.\left(2\frac{xy}{z}+2\frac{yz}{x}+2\frac{xz}{y}\right)\right]\)
\(=\frac{1}{4}.\left[3.\left(x+y+z\right)+\frac{y}{2}.\left(\frac{x}{z}+\frac{z}{x}\right)+\frac{x}{2}.\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{z}{2}.\left(\frac{x}{y}+\frac{y}{x}\right)\right]\)
\(\ge\frac{1}{4}.\left[3.\left(x+y+z\right)+x+y+z\right]=x+y+z\)
Mà x + y + z = a + b + c
\(\Rightarrow\)\(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\)\(\ge\)\(a+b+c\)
Câu 1. Trong một tam giác vuông, kết luận nào sau đây là đúng ?
A. Tổng hai góc nhọn bằng 180 0 B. Hai góc nhọn bằng nhau
C. Hai góc nhọn phô nhau D. Hai góc nhọn kề nhau .
Câu 2: Chọn câu trả lời đúng. Cho tam giác ABC có 00
A50;B60 thì C?
A. 70 0 B. 110 0 C. 90 0 D. 50 0
Câu 3. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cm
C. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ; 6cm
Câu 4: Chọn câu sai.
A. Tam giác có hai cạnh bằng nhau là tam giác cân.
B. Tam giác có ba cạnh bằng nhau là tam giác đều.
C. Tam giác cân là tam giác đều.
D. Tam giác đều là tam giác cân.
Câu 5: Tam giác ABC vuông tại B suy ra:
A. AB 2 = BC 2 + AC 2 B. BC 2 = AB 2 + AC 2
C. AC 2 = AB 2 + BC 2 D. Cả a,b,c đều đúng
Câu 6: Hãy điền dấu X vào ô trống mà em đã chọn :
Câu Nội dung Đúng Sai
1 Tam giác vuông có một góc bằng 045 là tam giác vuông cân
2 Tam giác cân có một góc bằng 060 là tam giác đều
3 Nếu ABC là một tam giác đều thì ABC là tam giác cân
4 Nếu hai cạnh và một góc của tam giác này bằng hai cạnh và
một góc của tam giác kia thì hai tam giác đó bằng nhau
Câu 7: a). Cho ABC vuông tại A có AB = 8 cm; AC = 6 cm thì BC bằng :
A. 25 cm B. 14 cm C. 100 cm D. 10 cm
b). Cho ABC cân tại A, biết 050B thì A bằng :
A. 080 B. 050 C. 0100 D. Đáp án khác
Câu 8 . Tam giác ABC có:
A. 0ABC90 B. 0ABC180 C. 0ABC45 D. 0ABC0
Câu 9: ABC = DEF Trường hợp cạnh – góc – cạnh nếu
A. AB = DE; BF ; BC = EF B. AB = EF; BF ; BC = DF
C. AB = DE; BE ; BC = EF D. AB = DF; BE ; BC = EF
Câu 10. Góc ngoài của tam giác bằng :
A. Tổng hai góc trong không kề với nó. B. Tổng hai góc trong
C. Góc kề với nó D. Tổng ba góc trong của tam giác.
Câu 1: C
Câu 2:A
Câu 3:C
Câu 4 C
Câu 5: B
Câu 6 1Đ, 2Đ, 3Đ, 4S
Câu 7: a, Đ
Câu 10 A.
Các câu khác k rõ đề