\(\text{x^2 – 16 - y^2 + 8y}\)
Phân tích đa thức thành nhân tử
phân tích đa thức thành nhân tử 4x^2-y^2+8y-16
\(4x^2-y^2+8x-16\)
\(=\left(2x\right)^2-\left(y-4\right)^2=\left(2x-y+4\right)\left(2x+y-4\right)\)
4x2 - y2 + 8y - 16
= 4x2 - (y2 - 8y + 16)
= (2x)2 - (y - 4)2
= [2x - (y - 4)][2x + (y - 4)]
= (2x - y +4)(2x + y - 4)
Phân tích đa thức thành nhân tử:
x^2 + 2xy - 8y^2 + 2xz + 14yz - 3z^2
x^4 - 13x^2 + 16
x2 + 2xy - 8y2 + 2xz + 14yz - 3z2
= ( x2 + y2 +z2 + 2xy + 2yz ) + ( -9x2 + 12yz - 4x2 )
= ( x + y +z )2 - [ (3x)2 - 2.3.x.2y + ( 2x)2
= ( x + y +z )2 - ( 3y - 2x)2
= ( x + y +z - 3y + 2x )(x+ y + z + 3y - 2x )
Phân tích đa thức sau thành nhân tử a) x^2 - 3x b) 10x.(x - y) - 8y.(x-y) c) x^2 - 9
a) \(x^2-3x=x\left(x-3\right)\)
b) \(10x\left(x-y\right)-8y\left(x-y\right)=2\left(x-y\right)\left(5x-4y\right)\)
c) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
a: \(x^2-3x=\left(x-3\right)\cdot x\)
c: \(x^2-9=\left(x-3\right)\left(x+3\right)\)
Phân tích đa thức thành nhân tử
D=x2-4x-y2-8y-12
D = x2 - 4x - y2 - 8y - 12
= (x2 - 4x + 4) - (y2 + 8y + 16)
= (x - 2)2 - (y + 4)2
= (x + y + 2)(x - y - 6)
\(D=x^2-4x-y^2-8y-12\)
\(=x^2-4x-y^2-8y+4-16\)
\(=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)\)
\(=\left(x-2\right)^2-\left(y+4\right)^2\)
\(=\left(x-2-y-4\right)\left(x-2+y+4\right)\)
\(=\left(x-y-6\right)\left(x+y+2\right)\)
(x - y )\(^3\) - 8y\(^3\)
phân tích đa thức thành nhân tử
=(x-y-2y)[(x-y)^2+2y(x-y)+4y^2]
=(x-3y)(x^2-2xy+y^2+2xy-2y^2+4y^2)
=(x-3y)(x^2+3y^2)
\(\left(x-y\right)^3-8y^3\)
\(=\left(x-y\right)^3-\left(2y\right)^3\)
\(=\left[\left(x-y\right)-2y\right]\left[\left(x-y\right)^2+2y\left(x-y\right)+\left(2y\right)^2\right]\)
\(=\left(x-y-2y\right)\left(x^2-2xy+y^2+2xy-2y^2+4y^2\right)\)
\(=\left(x-3y\right)\left(x^2+3y^2\right)\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a.2x^2-4x-8y^2+2
b.16+2xy-x^2-y^2
c.x^2-4+3.(x-2)^2
d.x^4+2x^2-15
c: \(x^2-4+3\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)
\(=\left(x-2\right)\left(x+2+3x-6\right)\)
\(=\left(4x-4\right)\left(x-2\right)\)
\(=4\left(x-1\right)\left(x-2\right)\)
phân tích đa thức sau thành nhân tử
1, 49y mũ 2 - x mũ 2 + 6x - 9
2, 25x mũ 2 - 4y mũ 2 - 4y - 1
3, 4x mũ 2 - y mũ 2 + 8y - 16
Phân tích đa thức thành nhân tử:
(x+y)^2-16
\(\left(x+y\right)^2-16\)
\(=\left(x+y\right)^2-4^2\)
\(=\left[\left(x+y\right)-4\right]\left[\left(x+y\right)+4\right]\)
\(=\left(x+y-4\right)\left(x+y+4\right)\)
phân tích đa thức thành nhân tử:
10x( x - y) -8y( y - x )
\(10x\left(x-y\right)-8y\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=2\left(x-y\right)\left(5x+4y\right)\)
1/x-1/y=1/6
<=> 6(y-x) = xy
<=>y(6-x) = 6x (1)
<=>y= 6x/(6-x) (2)
(1) => x<6 => x=1,2,3,4,5
Thay vào (2) ta có các cặp số nguyên thỏa đề bài là :
(x;y)= (2;3);(3;6)
10x (x-y) -8y(y-x)
=10x(x-y) + 8y(x-y)
=(x-y)(10x+8y)
=2(x-y)(5x+4y)