x^3(y+z^2) +y^3(z+x^2) +z^3(x+y^2) +xyz(xyz+1)
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(x+z\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
b)\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}}\)
Bài b nhé bạn!
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)
Trừ lại từng phương trình trong hệ:
\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)
Chia lại từng phương trình trong hệ mới, được:
\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)
Xong rồi đó!!!
Bài 1 phân tích đa thức thành nhân tử z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)
\(z^3\left(x+y^2\right)+y^3\left(z-x^2\right)-x^3\left(y+z^2\right)-xyz\left(xyz-1\right)\)
\(=xz^3+y^2z^3+y^3z-x^2y^3-x^3-x^3z^2-x^2y^2z^2+xyz\)
\(=\left(y^2z^3+y^3z\right)+\left(xz^3+xyz\right)-\left(x^2y^3+x^2y^2z^2\right)-x^3\left(y+z^2\right)\)
\(=y^2z\left(y+z^2\right)+xz\left(y+z^2\right)-x^2y^2\left(y+z^2\right)-x^3\left(y+z^2\right)\)
\(=\left(y+z^2\right)\left(y^2z+xz-x^2y^2-x^3\right)\)
\(=\left(y+z^2\right)\left[z\left(y^2+x\right)-x^2\left(y^2+x\right)\right]\)
\(=\left(y+z^2\right)\left(z-x^2\right)\left(y^2+x\right)\)
Tick hộ nha bạn 😘
z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)
a) (x+y)(x^2-y^2)+(y+z)(y^2-z^2)+(z+x)(z^2-x^2)
b) x^3(y-z)+y^3(z-x)+z^3(x-y)
c)x^3(z-y)+y^3(x-z)+z^3(y-z)+xyz(xyz-1)
x^3(y+z^2) +y^3(z+x^2) +z^3(x+y^2) +xyz(xyz+1) phân tích ra nhân tử giúp với T_T
CMR bieu thuc sau khong phu thoc vao x,y,z
P= x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
a)x^3.(z-y^2)+y^3.(x-z^2)+z^z^3.(y-x^2)+xyz.(xyz-1)
Cac ban lam dj mk tick cho!!
Phân tích thành nhân tử : x^3(y+z^2)+y^3(z+x^2)+z^3(x+y^2)+xyz(xyz+1)
Giải PT: \(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(x+z\right)=xyz-21\\x^3+z^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
Cho x*2-y=a , y*2-z=b, z*2-x=c
C/M:P=x*3(z-y*2)+y*3(x-z*2)+z*3(y-x*2)+xyz(xyz+1) không phụ thuộc vào giá trị của x,y,z.