Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hiếu Bro

Bài 1 phân tích đa thức thành nhân tử z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)

Nguyễn Hoàng Minh
2 tháng 8 2021 lúc 17:34

\(z^3\left(x+y^2\right)+y^3\left(z-x^2\right)-x^3\left(y+z^2\right)-xyz\left(xyz-1\right)\)

\(=xz^3+y^2z^3+y^3z-x^2y^3-x^3-x^3z^2-x^2y^2z^2+xyz\)

\(=\left(y^2z^3+y^3z\right)+\left(xz^3+xyz\right)-\left(x^2y^3+x^2y^2z^2\right)-x^3\left(y+z^2\right)\)

\(=y^2z\left(y+z^2\right)+xz\left(y+z^2\right)-x^2y^2\left(y+z^2\right)-x^3\left(y+z^2\right)\)

\(=\left(y+z^2\right)\left(y^2z+xz-x^2y^2-x^3\right)\)

\(=\left(y+z^2\right)\left[z\left(y^2+x\right)-x^2\left(y^2+x\right)\right]\)

\(=\left(y+z^2\right)\left(z-x^2\right)\left(y^2+x\right)\)

Tick hộ nha bạn 😘

 

Nguyễn Hiếu Bro
2 tháng 8 2021 lúc 17:29

z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)

 

Các câu hỏi tương tự
Trang Nguyễn
Xem chi tiết
Hoàng Chi
Xem chi tiết
Aỏiin
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Bánh cá nướng :33
Xem chi tiết
Anh Phạm Phương
Xem chi tiết
Cong Chu
Xem chi tiết
Nguyên Đoàn
Xem chi tiết
Tham Le
Xem chi tiết