Chứng tỏ rằng a=2mũ 2 + 2mũ 3+ 2mũ 4+......+2mũ90 chia hết cho 14
Chứng tỏ rằng ; A= 2 + 2mũ 2 + 2 mũ 3 + 2 mũ 4 + .....+ 2 mũ 90 chia hết cho 21
cau 6
Chứng tỏ tổng sau: A= 2mũ2 +2mũ4+2mũ6 +2mũ 8+............+2mũ18=2mũ 20 chia hết cho 5
\(A=2^2\left(1+2^2\right)+2^6\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
=5(2^2+2^6+...+2^18) chia hết cho 5
Chứng tỏ A chia hết cho 6 với A=2+2mũ 2+2mũ3+2mũ4+ ...+2mũ100 Giúp tớ vs ạ. Thanks
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\\ =6+2^2.6+...+2^{98}.6\\ =\left(1+2^2+...+2^{98}\right).6⋮6\left(đpcm\right)\)
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=6+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6\left(1+2^2+....+2^{98}\right)⋮6\)
Cho s=1+2+2 mũ 2+2 mũ 3+...+2mũ 2020+2021mũ
Chứng tỏ rằng s chia hết cho 3
Giúp mình giải bt này với mình cần gấp
\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)
\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)
\(=3+2^2.3+...+2^{2020}.3⋮3\)
VẬY \(S⋮3\)
Trả lời :...........................................
SCSH: (2021 - 1) : 1 = 2020
Tổng: (2021 + 1) : 2 = 1011
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)
\(\text{Số số hạng của S là 2022 số , chia làm 1011 cặp , mỗi cặp 2 số .}\)
\(\Leftrightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)
\(\Leftrightarrow S=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)
\(\Leftrightarrow S=3+2^2\times3+...+2^{2020}\times3\)
\(\Leftrightarrow S=3\left(1+2^2+...+2^{2020}\right)\)
\(\Rightarrow S⋮3\left(đpcm\right)\)
chứng minh rằng 3 mũ n+2-2mũ n+2+3mũ n-2mũ n
Chứng minh rằng 3n+2+2n+3+3n+2n+1 chia hết cho 10
cho A =2+2mũ 2 +2 mũ 3 +.....+ 2 mũ 60 chứng minh A chia hết cho 3 ,5,7
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)\)chia hết cho \(3\).
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+...+2^{57}\right)⋮5\)
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)\)chia hết cho \(7\).
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
Cho C = 3 +3mũ 2+.......+2mũ 60
chứng minh rằng
a,C chia hết cho 2
b, C chia hết cho7
c, C chia hết cho15
Mũ kí hiệu là ^ bạn nhé
C = 3 + 3 ^ 2 + 3 ^ 3 + .... + 3^ 60 có 60 số hạng
C = ( 3 + 3 ^ 2 ) + ( 3 ^ 3 + 3 ^ 4 ) + ..... + ( 3 ^ 59 + 3 ^ 60 ) có 60 : 2 = 30 cặp
C = 3 x ( 1 + 3 ) + 3 ^ 3 x ( 1 + 3 ) + .... + 3 ^ 59 x ( 1 + 3 )
C = 3 x 4 + 3 ^ 3 x 4 + ..... + ^ 59 x 4
C = ( 3 + 3 ^ 3 + ... + 3 ^ 59 ) x 4
C = ( 3 + 3^ 3 +... + 3 ^ 59 ) x 2x 2
Vì 2 chia hết cho 2 nên C chia hết cho 2
Câu b,c tương tự,chỉ cần bạn cặp 3 và 4 số lại
Chứng minh : 1/2mũ 2+1/2mũ 3+1/2mũ 4+....1/2 mũ n <1
giúp mk ngay mk cần gấp
Gọi \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) + ... + \(\frac{1}{2^n}\) là A
Ta có :
\(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{2^3}\)<\(\frac{1}{2.3}\)
\(\frac{1}{2^4}\)<\(\frac{1}{3.4}\)
....
\(\frac{1}{2^n}\)<\(\frac{1}{\text{(n - 1) . n}}\)
❄ Nên :
A < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{\text{(n - 1) . n}}\)
A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
A < \(1-\frac{1}{n}\) < 1
Vậy A < 1
\(\frac{1}{2^2}\)\(\frac{1}{2^2}\)