Mọi người tính hộ em với ạ.
lim sqrt(n + 4) /( sqrt (n) + 1)
Em cảm ơn ạ.
So sánh:
\(\sqrt{n+2}-\sqrt{n+1}\) và \(\sqrt{n+1}-\sqrt{n}\)
(n là số nguyên dương)
Mọi người giúp mình với ạ. làm chi tiết nha. cảm ơn trước ạ :)
n là số nguyên dương
Bình phương hai vế, ta được:
\(\left(\sqrt{n+2}-\sqrt{n+1}\right)^2=n+2+n+1-2\sqrt{\left(n+2\right)\left(n+1\right)}\) \(=2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}\)
\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=n+1+n-2\sqrt{n\left(n+1\right)}\) \(=2n+1-2\sqrt{n\left(n+1\right)}\)
Ta có: \(\left(n+2\right)\left(n+1\right)>n\left(n+1\right)\Rightarrow2\sqrt{\left(n+2\right)\left(n+1\right)}>2\sqrt{n\left(n+1\right)}\)
Mà 2n + 3 > 2n + 1
\(\Rightarrow2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}>2n+1-2\sqrt{n\left(n+1\right)}\)
=> ( √n+2 - √n+1)^2 > ( √n-1 - √n)^2
=> √n+2 - √n+1 > √n-1 - √n
P/s: Em làm còn sai nhiều, mong mọi người góp ý, đừng chọn sai cho em. Em cảm ơn
\(\sqrt{n+2}-\sqrt{n+1}\) và \(\sqrt{n+1}-\sqrt{n}\)
Bình phương mỗi số hạng, ta có:
\(\left(\sqrt{n+2}\right)^2-\left(\sqrt{n+1}\right)^2\) và \(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)
\(n+2-n+1\) và \(n+1-n\) ( Vì \(n\ge0\))
\(3\) và \(1\)
\(\Rightarrow3>1\)
Vậy \(\sqrt{n+2}-\sqrt{n+1}>\sqrt{n+1}-\sqrt{n}\)
Rút gon:
\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}\) với \(x\) ≤ -1
Nhờ mọi người làm rõ ràng hộ em ạ, em cảm ơn <3
\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}=\sqrt{\dfrac{\left(x+1\right)^2}{16x^2}}=\dfrac{\left|x+1\right|}{4\left|x\right|}=\dfrac{1-x}{-4x}=\dfrac{x-1}{4x}\left(do.x\le-1\right)\)
Rút gọn:
\(\dfrac{x-2\sqrt{x}}{x-4}\)
Nhờ mọi người làm rõ ràng hộ em ạ, em cảm ơn <3
\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
Dạ mọi người giúp em bài Toán này với ạ! Dạ em cảm ơn ạ
giải các phương trình sau:
\(\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x+2}+\sqrt{x+3}\right)=1\)
ĐKXĐ: \(x\ge-2\)
- Với \(-2\le x< 0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}>1\Rightarrow\sqrt{x^2+1}-x>1\\\sqrt{x+3}\ge1\Rightarrow\sqrt{x+2}+\sqrt{x+3}\ge1\end{matrix}\right.\)
\(\Rightarrow\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x+2}+\sqrt{x+3}\right)>1\) pt vô nghiệm
- Với \(x\ge0\)
\(\Leftrightarrow\frac{1}{\sqrt{x^2+1}+x}\left(\sqrt{x+2}+\sqrt{x+3}\right)=1\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{x+3}=x+\sqrt{x^2+1}\)
\(\Leftrightarrow\sqrt{x^2+1}-\sqrt{x+3}+x-\sqrt{x+2}=0\)
\(\Leftrightarrow\frac{x^2-x-2}{\sqrt{x^2+1}+\sqrt{x+3}}+\frac{x^2-x-2}{x+\sqrt{x+2}}=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+\frac{1}{x+\sqrt{x+2}}\right)=0\)
\(\Leftrightarrow x^2-x-2=0\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
mọi người giúp em với ạ em cảm ơn\(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
Mọi người ơi, giúp em giải thật chi tiết từng bước bài này với ạ. Em cảm ơn mọi người rất rất nhiều ạ!
\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\) Với x>0; x khác 1
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(\dfrac{2\left(\sqrt{2}-\sqrt{6}\right)}{3\sqrt{2-\sqrt{3}}}\)
giúp em với mọi người em cảm ơn ạ
\(\dfrac{2\left(\sqrt{2}-\sqrt{6}\right)}{3\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{2\sqrt{2}\left(1-\sqrt{3}\right)}{3\cdot\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{4\left(1-\sqrt{3}\right)}{3\cdot\sqrt{4-2\sqrt{3}}}\)
\(=\dfrac{-4\left(\sqrt{3}-1\right)}{3\cdot\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{-4\left(\sqrt{3}-1\right)}{3\cdot\left(\sqrt{3}-1\right)}=-\dfrac{4}{3}\)
\(Cho\) \(x=\dfrac{1}{3}\left(1+\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)\). \(Tính\) \(M=\left(9x^3-9x^2-3\right)^2\)
Mọi người giúp em với ạ, em cảm ơn ^^
lim\(\dfrac{\sqrt{n+10}}{5\sqrt{n}-4}\)
giúp em với ạ
\(lim\dfrac{\sqrt{n+10}}{5\sqrt{n}-4}\)
\(=lim\dfrac{\sqrt{n+10}}{\sqrt{25n}-4}\)
\(=lim\dfrac{n\sqrt{\dfrac{1}{n}+\dfrac{10}{n}}}{n\sqrt{25}-4}\)
\(=lim\dfrac{\sqrt{\dfrac{1}{n}+\dfrac{10}{n}}}{5+\dfrac{4}{n}}\)
\(=0\)
\(=\lim\dfrac{\sqrt{1+\dfrac{10}{n}}}{5-\dfrac{4}{\sqrt{n}}}=\dfrac{1}{5}\)