Giải phương trình:
(3x-1)2 -3(3x-2)=9(x+1)(x-3)
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
giải phương trình (x-1)^3 - (x+3)(x^2-3x+9)=-3x(x+2)
giúp mk vs
\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=-3x\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)-\left(x^3+27\right)=-3x^2-6x\)
\(\Leftrightarrow-3x^2+3x-28=-3x^2-6x\)
\(\Leftrightarrow3x-28=-6x\Leftrightarrow9x=28\)
\(\Leftrightarrow x=\frac{28}{9}\)
Vậy tập nghiệm S\(=\left\{\frac{28}{9}\right\}\)
Đáp án:
(x−1)3−(x+3)(x2−3x+9)=−3x(x+2)
⇒x3−3x2+3x−1−(x3+33)=−3x2−6x
⇒x3−3x2+3x−1−x3−27+3x2+6x=0
⇒9x−28=0
⇒x=\(\frac{28}{9}\)
Vậyx=\(\frac{28}{9}\)
#Châu's ngốc
Giải phương trình A) (x-1)²+2=x²+3x B) x-3/x+3 - 2/2-3=-3(x-1)/x²-9 C) 12x+1/12
a) Ta có: \(\left(x-1\right)^2+2=x^2+3x\)
\(\Leftrightarrow x^2-2x+1+2-x^2-3x=0\)
\(\Leftrightarrow-5x=-3\)
hay \(x=\dfrac{3}{5}\)
giải các phương trình sau:
a.3(x-2)-10=5(2x + 1)
b.3x + 2=8 -2(x-7)
c.2x-(2+5x)= 4(x + 3)
d.5-(x +8)=3x + 3(x-9)
e.3x - 18 + x= 12-(5x + 3)
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
Giải các phương trình sau:
a)(2-3x)*(x+11)=(3x-2)*(2-5x)
b)(x+3)^3-9(x+3)=0
c)x^3+1=x(x+1)
Bài I : Giải các phương trình sau
1) 3x – 2( x – 3 ) = 6 2)
3) ( x – 1 )2 = 9 ( x + 1 )2 4)
1) \(3x-2x+6=6\Leftrightarrow x=0\)
2) \(4\left(2x-1\right)-12x-12=3\left(x+2\right)\)
\(\Leftrightarrow8x-4-12x-12-3x-6=0\)
\(\Leftrightarrow7x=-22\Leftrightarrow x=\dfrac{-22}{7}\)
3, \(\left(x-1\right)2=9\left(x+1\right)2\)
\(\Leftrightarrow2x-2\) \(=18x+18\)
\(\Leftrightarrow2x-18x=18+2\)
\(\Leftrightarrow-16x\) \(=20\)
\(\Leftrightarrow x\) \(=\dfrac{-5}{4}\)
Vậy pt đã cho có tập nghiệm là S= \(\left\{\dfrac{-5}{4}\right\}\)
4, \(\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\) ( ĐKXĐ : \(x\ne\pm1\) )
\(\Leftrightarrow\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x+4\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow x^2-3x-4+x^2+3x-4=2x^2-2\)
\(\Leftrightarrow2x^2-8-2x^2+2=0\)
\(\Leftrightarrow0\) \(=6\) ( Vô lí )
Vậy pt đã cho vô nghiệm
a) \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\)
\(\Leftrightarrow\left[\left(3x+2\right)-\left(3x-2\right)\right]\left[\left(3x+2\right)+\left(3x-2\right)\right]=5x+38\)
\(\Leftrightarrow\left(3x+2-3x+2\right)\left(3x+2+3x-2\right)=5x+38\)
\(\Leftrightarrow4\cdot6x=5x+38\)
\(\Leftrightarrow24x-5x=38\)
\(\Leftrightarrow19x=38\Leftrightarrow x=\dfrac{38}{19}=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x+1\right)\left(x^2-2x+1\right)-2x=2\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x=2\left(x^2-1\right)\)
\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x=2x^2-2\)
\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x-2x^2+2=0\)
\(\Leftrightarrow x^3-3x^2-3x+3=0\)
PT vô nghiệm , không tìm được x
Vậy \(S=\varnothing\)
c) \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Leftrightarrow3\left(x^2-2x+4\right)+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Leftrightarrow3x^2-6x+12+9x-9=3x^2+3x-9\)
\(\Leftrightarrow3x^2-6x+12+9x-9-3x^2-3x+9=0\)
\(\Leftrightarrow0x+12=0\)
PT vô nghiệm
Vậy \(S=\varnothing\)
Câu cuối tương tự
Giải hệ phương trình: \(\hept{\begin{cases}x^2+y^2+xy=9\\x+y+xy=3\end{cases}}\)
Giải phương trình \(\sqrt[3]{x^2+2}+\sqrt[3]{4x^2+3x-2}=\sqrt[3]{3x^2+x+5}+\sqrt[3]{2x^2+x-5}\)
Giải phương trình \(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
Câu 3 :
ĐKXĐ : \(x\ge1\)
\(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left[x^2-\left(x-1\right)\right]=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow\left(x+\sqrt{x-1}\right)\left(x+\sqrt{x-1}-3x+3\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x-1}\right)\left(4\sqrt{x-1}-2x\right)=0\)
Tới đây thì dễ rồi ^^
giải các Phương trình sau
a) x/2+x/3=1/4-x5
b) ( x+1)^2-5=x^2+11
c) 3.(3x-1)=3x+5
d) 3x.(2x-3)-3.(3+2x^2)=0
e) (3x-1)^2-3.(3x-2)=9.(x+1).(x-3)
f) (x-1)^2-x.(x+1)+3.(x-2)+5=0
a, làm tương tự với phần b bài nãy bạn đăng
b, \(\left(x+1\right)^2-5=x^2+11\)
\(\Leftrightarrow x^2+2x+1-5=x^2+11\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! )
c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)
\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)
d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)
\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)
e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )
f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)
\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)
\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí
Vậy phương trình vô nghiệm