Cho m=ab(a+b-c)+bc(b+c-a)+ca(c+a-b). CMR a+b+c⋮⋮12 thì M⋮⋮12
Mong các bạn giúp mik giải ạ!
Cho các số thực không âm a,b,c thỏa mãn 3(a2+b2+c2)+ab+bc+ca=12. CMR\(22\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le32\)
Cao nhân giải giúp e vs ạ
Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)
Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)
\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)
\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:
\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)
Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)
\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..)
Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\) với \(0\le v\le1\)
Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)
Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)
Ta có đpcm.
P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.
Quên:
\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.
\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)
tại sao \(f\left(v\right)\) đồng biến ? và tại sao \(f\left(v\right)\) đồng biến thì min,max tại v=0,v=1 ? Khi làm cần giải thích rõ hoặc nếu không giải thích được thì chú ko nên ghi vào để người khác hiểu lầm
Cho m=ab(a+b-c)+bc(b+c-a)+ca(c+a-b). CMR a+b+c\(⋮\)12 thì M\(⋮\)12
Tìm các số hữu tỉ a,b,c biết:
1} ab=3/5 bc=4/5 ca=3/4
2} a.{ a + b +c} = -12 b.{ a +b + c } = 18 c.{ a + b + c} = 30
GIÚP MIK NHA !!! MIK CẢM ƠN CÁC BẠN NHIỀU!!!
a, Nhân ba vế lại ta được:
ab.bc.ca = 3/5.4/5.3/4
(abc)2 = \(\left(\pm1\right)^2\)
=> abc = 1 hoặc abc = -1
Với abc = 1 => \(\hept{\begin{cases}\frac{3}{5}c=1\\\frac{4}{5}a=1\\\frac{3}{4}b=1\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{5}{3}\\a=\frac{5}{4}\\b=\frac{4}{3}\end{cases}}}\)
Với abc = -1 => \(\hept{\begin{cases}\frac{3}{5}c=-1\\\frac{4}{5}a=-1\\\frac{3}{4}b=-1\end{cases}\Rightarrow\hept{\begin{cases}c=-\frac{5}{3}\\a=\frac{-5}{4}\\b=-\frac{4}{3}\end{cases}}}\)
b, cộng 3 vế lại ta được:
a(a+b+c)+b(a+b+c)+c(a+b+c)=-12+18+30
(a+b+c)2=36
(a+b+c)2=\(\left(\pm6\right)^2\)
=> a+b+c = 6 hoặc a+b+c = -6
Với a+b+c=6 => \(\hept{\begin{cases}6a=-12\\6b=18\\6c=30\end{cases}\Rightarrow\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}}\)
Với a+b+c=-6 => \(\hept{\begin{cases}-6a=-12\\-6b=18\\-6c=30\end{cases}\Rightarrow\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}}\)
Cho a,b,c là các số dương. CMR \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)Mọi người giúp em với ạ!
Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)
\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)
\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
Nhân phá và rút gọn 2 vế:
\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)
Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)
a) CMR:(x+a)*(x+b)*(x+c) = x3 + (a+b+c)*k + (ab+bc+ca)*x + abc
b) Áp dụng: (1+a)*(1+b)*(1+c) = ???
c) Cho a; b; c bé hơn hoặc bằng 1. CMR
1 lớn hơn hoặc bằng a + b + c - (ab+bc+ca) + abc
Đây là toán 8 nâng cao, các bạn giúp mình nhé! Cảm ơn ạ! 😙💕❤💋💦
1.Tìm các số a, b, c biết: \(a^2\)+ 4b+ 4 = 0; \(b^2\)+ 4c + 4 = 0 và \(c^2\) + 4a + 4 = 0
2.Cho ab+bc+ca = abc, a+b+c =0 .Tính \(\dfrac{1}{a^2}\)+ \(\dfrac{1}{b^2}\) + \(\dfrac{1}{c^2}\)
mong mọi người giải giúp vs ạ! Em cảm ơn nhiều
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
CMR với mọi a,b,c thực thì
A) a^2+b^2+c^2+ab+Bc+ca lớn hơn hoặc bằng 0
B)a^2+b^2+c^2-ab-bc-ca lớn hơn hoặc băng 0
Cm hộ e ạ nếu CM đẳng thức thì giải thích đẳng thức cho e dc k ạ
A) a2+b2+c2+ab+bc+ca>=0 (*)
<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0
<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0
<=> (a+b)2+(b+c)2+(c+a)2>=0
BĐT cuối luôn đúng với mọi a,b,c
Vậy BĐT (*) đc cm
Phần B cũng tương tự nhé
a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2
Mà \(\left(a+b+c\right)^2\ge0\forall x\)
Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)
b) hình như sai đề rồi bạn à !
Cho a,b,c >0 CMR a3/b+b3/c+c3/a>=ab+bc+ca
Mong mọi người giải chi tiết
Cách khác dễ hiểu hơn
Áp dụng BĐT Cô si 2 số ko âm
Ta có: \(\frac{a^3}{b}+ab\ge2\sqrt{a^4}=2a^2\)
Tương tự rồi sau đó lại có:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Áp dụng BĐT Cô si với 3 số k âm
\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge\frac{3\sqrt[3]{a^3.a^3.b^2}}{b^2}=3a^2\)
\(\frac{b^3}{c}+\frac{b^3}{c}+b^2\ge3b^2\)
\(\frac{c^3}{a}+\frac{c^3}{a}+c^2\ge3c^2\)
\(\Rightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
MN GIUPS MK VS Ạ, MK XIN CẢM ƠN. MK ĐG CẦN RẤT GẤP Ạ.
B1) Cho các số thực dương a,b,c . CMR
a) a^2+b^2+c^2+abc+5>=3(a+b+c)
b) a^2+b^2+c^2 + 2abc +4>=2(a+b+c)+ab+bc+ca.
B2) Cho các số thực a; b; c: Chứng minh rằng
(a^2+1)(b^2+1)(c^2+1)>=5/16 .(a+b+c+d+1)^2.
MN GIÚP MK VS Ạ. MONG ADD DUYỆT Ạ . CẢM ƠN MN.