Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
Đoàn Đức Hà
30 tháng 1 2021 lúc 0:30

\(x-y-z+3=0\Leftrightarrow x=y+z-3\)

\(x^2-y^2-z^2=\left(y+z-3\right)^2-y^2-z^2=y^2+z^2+9+2yz-6y-6z-y^2-z^2\)

\(=2yz-6y-6z+9=1\)

\(\Leftrightarrow yz-3y-3z+4=0\)

\(\Leftrightarrow\left(y-3\right)\left(z-3\right)=5=1.5=\left(-1\right).\left(-5\right)\)

Xét bảng: 

y-315-1-5
z-351-5-1
y482-2
z84-22
x99-3-3
Khách vãng lai đã xóa
Trương Tùng Dương
Xem chi tiết
Witch Rose
24 tháng 6 2019 lúc 8:52

Áp dụng hđt: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)Ta có: \(x^3+y^3+3xyz=z^3\Leftrightarrow x^3+y^3+3xyz-z^3=0\Leftrightarrow\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)=0\)

Th1: \(x+y-z=0\Leftrightarrow x+y=z\Rightarrow z^3=\left(2x+2y\right)^2=4z^2\Leftrightarrow z=4\)(do z là số nguyen dương)

\(\Rightarrow x+y=4\)\(\Rightarrow\left(x,y\right)\in\left\{\left(1,3\right)\left(2,2\right)\left(3,1\right)\right\}\)

\(TH2:x^2+y^2+z^2-xy+xz+yz=0\Leftrightarrow\frac{\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2}{2}=0\)(loại vì x,y,z nguyên dương nên VT>0 )

Vậy...

Mai Tiến Đỗ
Xem chi tiết
Cassie Natalie Nicole
Xem chi tiết
oOo Sát thủ bóng đêm oOo
8 tháng 7 2018 lúc 15:38

x=2,y=2,z=4

êfe
8 tháng 7 2018 lúc 15:45

lời giải

Lê Tuấn Nghĩa
Xem chi tiết
Đào Thu Hoà
26 tháng 5 2019 lúc 21:56

áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)

Hoàng Long
26 tháng 5 2019 lúc 21:52

1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1

Tìm GTNN của P= x-1/y+y-1/x+ x-1/x2

               Giải

Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1

Theo AM-GM ta có:

P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1

Dấu = xảy ra⇔x=y=z=1√3

P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!

Đào Thu Hoà
26 tháng 5 2019 lúc 22:03

Hoặc sử dụng bất đẳng thức Cauchy-Schwarz thì ngắn hơn nhiều 

\(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge\frac{\left(x-1+y-1+z-1\right)^2}{z+x+y}=\frac{\left(x+y+z-3\right)^2}{x+y+z}=\frac{1}{2}..\)

Nguyễn Thiều Công Thành
Xem chi tiết
Aphrodite
Xem chi tiết
alibaba nguyễn
22 tháng 11 2017 lúc 8:44

Xét x, y, z cùng chẵn hoặc cùng lẻ thì ta có:

\(\left(x-y\right)^3\)chẵn; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\) chẵn

\(\Rightarrow VT\)là số chẵn còn VP là số lẻ (loại).

Xét trong 3 số x, y, z có 2 số chẵn 1 số lẻ. Không mát tính tổng quát giả sử số lẻ là x.

\(\left(x-y\right)^3\)lẻ; ​​\(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ

\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).

Xét trong 3 số x, y, z có 2 số lẻ 1 số chẵn. Không mát tính tổng quát giả sử số chẵn là x.

\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ

\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).

Vậy PT vô nghiệm.

Hà Minh Hiếu
21 tháng 11 2017 lúc 19:16

Ta xét tính chẵn lẻ của x,y,z rồi chứng minh tổng trên luôn chẵn là được

SKT T1 Faker
22 tháng 11 2017 lúc 19:18

내년 SKT T1이 다시 돌아와 삼성 갤럭시를 이길 것입니다

camcon
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 2 2024 lúc 20:33

Pt đầu tương đương: \(\sqrt[3]{x^2}+2\sqrt[3]{y^2}+4\sqrt[3]{z^2}=7\)

Pt 2 tương đương:

\(\left(xy^2+z^4\right)^2-\left(xy^2-z^4\right)^2=4\)

\(\Leftrightarrow4xy^2z^4=4\)

\(\Leftrightarrow xy^2z^4=1\) (1)

Quay lại pt đầu, áp dụng AM-GM:

\(7=\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z}\ge7\sqrt[7]{\sqrt[3]{x^2}.\sqrt[3]{y^4}.\sqrt[3]{z^8}}\)

\(\Leftrightarrow\sqrt[21]{x^2y^4z^8}\le1\)

\(\Leftrightarrow x^2y^4z^8\le1\)

\(\Rightarrow\left|xy^2z^4\right|\le1\Rightarrow xy^2z^4\le1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x^2=y^2=z^2\\xy^2z^4=1\\x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=\pm1\\z=\pm1\end{matrix}\right.\)

Các bộ thỏa mãn là: \(\left(1;1;1\right);\left(1;1;-1\right);\left(1;-1;1\right);\left(1;-1;-1\right)\)