Cho tam giác ABC, gọi D, E lần lượt là trung điểm của AC, AB. Trên tia đối của tia DB lấy M sao cho DM = DB; trên tia đối của tia EC lấy N sao cho EN = EC. Chứng minh A là trung điểm của MN?
Xét tứ giác ABCM có
D là trung điểm của đường chéo AC
D là trung điểm của đường chéo BM
Do đó: ABCM là hình bình hành
Suy ra: AM//BC và AM=BC(1)
Xét tứ giác ANBC có
E là trung điểm của đường chéo AB
E là trung điểm của đường chéo CN
Do đó: ANBC là hình bình hành
Suy ra: AN//BC và AN=BC(2)
Từ (1) và (2) suy ra AM=AN(3)
Ta có: AM//BC
AN//BC
mà AM và AN có điểm chung là A
nên N,A,M thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của NM
Cho tam giác ABC cân tại A. Lấy D, E lần lượt là trung điểm của AB và AC. a) Chứng minh tứ giác BDEC là hình thang cần. b) Lấy I là trung điểm của BD. Qua I vẽ đường thẳng song song với AC cắt DE tại M, BC tại N. Chứng minh MN – EC. ©) Tứ giác BMDN là hình gi? Vì sao? d) . Tìm điều kiện của AABC đề tử giác BMDN là hình vuông?
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
hay BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, lấy điểm E thuộc cạnh AB sao cho AD=AE a) Chứng minh DB=EC b) Gọi O là giao điểm của DB và EC. Chứng minh và là các tam giác cân c) Chứng minh DE / / BC
Cho tam giác ABC cân tại A ,lấy M,N lần lượt là trung điểm của AB,AC.Chứng minh MN//BC,MN=1/2BC
Lời giải:
Tam giác $ABC$ cân tại $A$ nên:
$\widehat{ABC}=\frac{180^0-\widehat{A}}{2}$
$M,N$ là trung điểm của $AB,AC$ mà $AB=AC$ nên $AM=AN$
$\Rightarrow \triangle AMN$ cân tại $A$
$\Rightarrow \widehat{AMN}=\frac{180^0-\widehat{A}}{2}$
Do đó: $\widehat{ABC}=\widehat{AMN}$
$\Rightarrow MN\parallel BC$
Trên tia đối của tia $NM$ lấy $P$ sao cho $NM=NP$
Dễ chứng minh $\triangle AMN=\triangle CPN$ (c.g.c)
$\Rightarrow \widehat{AMN}=\widehat{CPN}$ $\Rightarrow AM\parallel CP$
$\Rightarrow BM\parallel CP$
$\Rightarrow \widehat{BMC}=\widehat{PCM}$ (so le trong)
Xét tam giác $BMC$ và $PCM$ có:
$MC$ chung
$\widehat{BMC}=\widehat{PCM}$ (cmt)
$\widehat{BCM}=\widehat{PMC}$ (so le trong)
$\Rightarrow \triangle BMC=\triangle PCM$ (g.c.g)
$\Rightarrow BC=PM=2MN\Rightarrow MN=\frac{BC}{2}$
Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//BC và \(MN=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)
Cho tứ giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB(DA=DB) và ACE(EA=EC). Gọi M là trung điểm BC, I là giao điểm của DM với AB, K là giao điểm của EM với AC.Chứng minh
a, Ba điểm D,A,E thẳng hàng
b,Tứ giác IAKM là hình chữ nhật
c,Tam giác DME là tam giác vuông cân
a) Ta có A1 + C1 = 90 độ (...)
A3 + B1 = 90 độ (...)
=> A1 + A3 + C1 + B1 = 180 độ (1)
Có BD vuông góc DE
CE vuông góc DE
=> BD // EC
=> B1 + B2 + C2 + C1 = 180 độ
Mà B2 + C2 = 90 độ => B1 + C1 = 90 độ (2)
Từ (1) và (2) => A3 + A1 = 90 độ. Mà A2 = 90 độ
Suy ra : A1 + A2 + A3 = 180 độ. Hay góc DAE là góc bẹt
=> D,A,E thẳng hàng.
b) Ta có AM=MC
AE=EC
=> ME là đường trung trực của AC.
=> AKM = 90 độ (3)
CMTT => AIM = 90 độ (4)
Mà IAK = BAC = 90 độ (5)
Từ (3)(4)(5) => IMKA là hình chữ nhật
c) Có ME là đường trung trực của AC (câu b)
Mà ▲AEC vuông cân tại E => EM là tia phân giác AEC
=> AEM = 90/2 = 45 độ. (*)
Ta lại có IMKA là hình chữ nhật => IMK = 90 độ (**)
Từ (*) và (**) => ▲DME vuông cần tại M
a,Tam giác ABD vuông cân => \(\widehat{BAD}=\widehat{ABD}=45^{o}\)
Tam giác ACE vuông cân => \(\widehat{CAE}=\widehat{ACE}=45^{o}\)
=>\(\widehat{DAE}=\widehat{BAD}+\widehat{A}+\widehat{CAE}=45^{o}+90^{o}+45^{o}=180^{o}\)
=> 3 điểm A,D,E thẳng hàng
\(b, cm\Delta BID=\Delta AID=>\widehat{BID}=\widehat{AID}=90^{o}\\ =>\widehat{BIM}=\widehat{AIM}=90^{o}\\ cm \ tg \ tự \ ta \ có: \widehat{AKM}=\widehat{CKM}=90^{o}\\ \)
=>IAKM là hcn
c,Thep phần b có IAKM là hcn=> \(\widehat{DME}=90^{o}\)
Và \(\Delta BID=\Delta AID=>AI=BI\)
=>DI là đg trung tuyến mà tam giác DAB vuông cân
=> DI là đg phân giác=>\(\widehat{ADM}=45^{o}\)
Tg tự: \(\widehat{AEM}=45^{o}\)
=>Tam giác AME vuông cân
cho tam giác ABC vuông cân tại A, d là đường thẳng bất kỳ qua A, D,E lần lượt là hình chiếu cuảt B,C lên d.
a/ Chứng minh DE=DB+EC
b/ Gọi M là trung điểm BC. Chứnng minh tam giác DME vuông cân
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, lấy điểm E thuộc cạnh AB sao cho AD=AE
a/Chứng minh DB=EC
b/Gọi O là giao điểm của DB và EC . Chứng minh tam giác OBC và tam giác ODE là các tam giác cân
c/Chứng minh DE // BC
a) Xét △ABD và △ACE có:
AB = AC (gt)
\(\widehat{A}\) chung
AD = AE (gt)
\(\Rightarrow\)△ABD = △ACE (c.g.c)
\(\Rightarrow\)DB = EC (cặp cạnh tương ứng)
b) Ta có :△ABD = △ACE
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) (cặp góc tương ứng)
Mà \(\widehat{ABC}=\widehat{ACB}\) ( △ABC cân tại đỉnh A)
\(\Rightarrow\widehat{ABC}-\widehat{B_1}=\widehat{ACB}-\widehat{C_1}\)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
\(\Rightarrow\)△OBC cân tại đỉnh O
\(\Rightarrow\)OB = OC
Ta có: DB = EC (cmt)
OB = OC
\(\Rightarrow\)DB - OB = EC - OC
\(\Rightarrow\)OE = OD
\(\Rightarrow\)△ODE cân đỉnh O (ĐPCM)
c) △OBC cân tại đỉnh O
\(\Rightarrow\)\(\widehat{OCB}=\frac{180^o-\widehat{BOC}}{2}\)
△ODE cân tại đỉnh O
\(\Rightarrow\widehat{DEO}=\frac{180^o-\widehat{DOE}}{2}\)
Mà \(\widehat{BOC}=\widehat{DOE}\)(đối đỉnh)
\(\Rightarrow\widehat{DEO}=\widehat{OCB}\)
Vì 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\)DE // BC (ĐPCM)
Cho tam giác ABC, đường thẳng song song với BC cắt cạnh AB, AC lần lượt tại D và E. Chứng minh: Nếu \(\dfrac{DA}{DB}\)=\(\dfrac{EC}{EA}\) thì D, E lần lượt là trung điểm của AB và AC
Do DE song song BC
=> Theo định lý Talet, DA/DB = EA/EC
Mà DA/DB= EC/EA
=> EC=EA
=> E là trung điểm AC
=> DE là đường trung bình của tam giác ABC
=> D cũng là trung điểm AB