Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Xuân Huấn
Xem chi tiết
Hồng Phúc
2 tháng 2 2021 lúc 21:16

\(f\left(3\right).f\left(-2\right)=\left(9a+3b+c\right)\left(4a-2b+c\right)\)

\(=\left[3\left(a+b\right)+6a+c\right]\left[-2\left(a+b\right)+6a+c\right]\)

\(=\left(6a+c\right)\left(6a+c\right)=\left(6a+c\right)^2\ge0\) (đpcm)

Bảo Châu Trần
Xem chi tiết
Nguyễn Huy Tú
2 tháng 2 2021 lúc 21:11

Theo bài ra ta có : 

\(f\left(3\right)=a.3^2+3b+c=9a+3b+c\)

\(f\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)

hay \(f\left(3\right).f\left(2\right)\ge0\)

\(\Leftrightarrow\left(9a+3b+c\right)\left(4a-2b+c\right)=0\)

Dấu ''='' xảy ra <=> \(a=b=c=0\)( thỏa mãn điều kiện )

Khách vãng lai đã xóa
Cỏ Bốn Lá
Xem chi tiết
Nguyễn Hữu Phương Trinh
Xem chi tiết
Thảo Minh Donna
Xem chi tiết
Nguyễn Minh Chiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 19:54

13a+b+2c=0

=>b=-13a-2c

f(-2)=4a-2b+c=4a+c+26a+4c=30a+5c

f(3)=9a+3b+c=9a+c-39a-6c=-30a-5c

=>f(-2)*f(3)<=0

thu
Xem chi tiết
Nguyễn Tiến Đạt
16 tháng 4 2018 lúc 20:30

Bạn ơi đề sai đấy đáng ra bắt c/m f(-2).f(3)\(\le0\)nha bạn 

ta có f(x)=ax2+bx+c

\(\hept{\begin{cases}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{cases}}\)

Xét tổng f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)

                            =4a-2b+c+9a+3b+c

                             =13a+b+2c

Lại có 13a+b+2c=0 (giả thiết)

=> f(-2)+f(3)=0

=> f(-2)=-f(3)

=> f(-2).f(3)=f(-2).[-f(-2)]

=-[f(-2)2 ]

Do [f(-2)2 ] \(\ge0\)=> -[f(-2)2 ]\(\le0\)

=> f(-2).f(3)\(\le0\)(đpcm)

vu tien dat
25 tháng 6 2017 lúc 22:21

Ta có:

f(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

f(3) = a.32 + b.3 + c = 9a + 3b + c

Suy ra: f(-2) + f(3) = 13a + b + 2c. Do đó f(-2).f(3) < 0 (đpcm)

thu
12 tháng 7 2017 lúc 17:02

Cảm ơn bạn nha nhưng chả có căn cứ gì cả

Nguyen Nghia Gia Bao
Xem chi tiết
Hoang Hung Quan
5 tháng 4 2017 lúc 9:14

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)

Rarah Venislan
Xem chi tiết