Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Nghia Gia Bao

a) Cho đa thức F(x)= \(ax^2+bx+c\). Các số a, b, c là các số thực thỏa mãn: \(13a+b+2c\). Chúng minh F(-2).F(3)\(\le\)0.

b) Cho đa thức F(x)=\(ax^2+bx+c\). Biết \(5x+b+2c=0\).Chứng minh F(2).F(-1)\(\le\)0.

Hoang Hung Quan
5 tháng 4 2017 lúc 9:14

a) Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=\left(4a-2b+c\right)+\left(9a+3b+c\right)\)

\(=\left(4a+9a\right)+\left(-2b+3b\right)+\left(c+c\right)\)

\(=13a+b+2c=0\)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(3\right)\right]^2\le0\)

Vậy \(f\left(-2\right).f\left(3\right)\le0\) (Đpcm)

b) Sửa đề:

Biết \(5a+b+2c=0\)

Giải:

Ta có:

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a.2^2+b.2+c=4a+2b+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=\left(a-b+c\right)+\left(4a+2b+c\right)\)

\(=\left(4a+a\right)+\left(-b+2b\right)+\left(c+c\right)\)

\(=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Rightarrow f\left(2\right).f\left(-1\right)=-\left[f\left(-1\right)\right]^2\le0\)

Vậy \(f\left(2\right).f\left(-1\right)\le0\) (Đpcm)


Các câu hỏi tương tự
Đặng Thị Hông Nhung
Xem chi tiết
Ngô Tấn Đạt
Xem chi tiết
Lê Huyền
Xem chi tiết
Phong Nguyễn Trần
Xem chi tiết
Nguyễn Phan Như Thuận
Xem chi tiết
Bích Phương
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
Cuồng Sơn Tùng M-tp
Xem chi tiết
Nguyễn Hữu Bền
Xem chi tiết