Biết đa thức f(x)=\(ax^{^{ }3}+bx^2+cx+d\)(với a khác 0) có 2 nghiệm 1 và-1. Tìm nghiệm thứ ba của đa thức f(x)?
Cho đa thức f (x) = \(ax^3+bx^2+cx+d\) với a là số nguyên dương . Biết f (5) - f ( 4 ) =2012 .
Chứng minh f (7) - f (2) là hợp số .
Tìm mối liên hệ của a, b, c, d để x = 1 là nghiệm của đa thức f (x) = \(ax^3+bx^2+cx+d\).
Cho đa thức f(x) = ax^3 + bx^2 + cx +d trong đó a,b,c,d \(\in\) Z và thỏa mãn b = 3a + c
Chứng minh rằng f(1)*f(-2) là bình phương của một số nguyên.
Tam thức bậc hai là đa thức có dạng f(x) = ax2+ bx +c với a,b,c là hằng số khác 0
Hãy xác định các hệ số a,b biết f(1)=2;f(3)=8
a) Cho đa thức F(x)= \(ax^2+bx+c\). Các số a, b, c là các số thực thỏa mãn: \(13a+b+2c\). Chúng minh F(-2).F(3)\(\le\)0.
b) Cho đa thức F(x)=\(ax^2+bx+c\). Biết \(5x+b+2c=0\).Chứng minh F(2).F(-1)\(\le\)0.
cho hai đa thức f(x)= ax^2+bx+c và g(x)=cx^2+bx+a . cmr nếu f(x0)=0 thì g(1/x0)=0
Cho f(x)=ax3+bx2+cx+d (x # 0) có nghiệm là 1 và -1
a) Tìm mối quan hệ giữa a,b,c,d
b) Tìm nghiệm còn lại của f(x)
cho f(x)= ax3+bx2+cx+d, trong đó a, b, c, d là hằng số và thỏa mãn: b=3a+c. chứng tỏ f(1)=f(-2)