chứng minh rằng vs mọi số tự nhiên a , tồn tại số tự nhiên b s cho ab +4 là số chính phương
chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab+4 là số chính phương
jup mik vs các bạn
Với a bất kì thì ta chọn b sao cho b=a-4
Khi đó: ab+4=a(a-4)+4
=a2-4a+4
=a2-2.2.a+22
=(a-2)2
Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương
Này nhé:
Ta có:
Giả sử: ab + 4 = A2
<=> A2 - 4 = ab
<=> A2 - 22 = ab
<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b
=> Đpcm
Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Lời giải:
Cho $b=a+4$ ta có:
$ab+4=a(a+4)+4=a^2+4a+4=(a+2)^2$ là số chính phương.
Vậy với mọi số tự nhiên $a$, tồn tại số tự nhiên $b=a+4$ để $ab+4$ luôn là số chính phương.
Chứng minh rằng mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab+4 là số chính phương.
Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Đáp án: theo đề bài :
ab+4=x^2
<=>x^2-4=ab
<=>x^2-2^2=ab =>(x+2)(x-2)=ab
Với b=a+4 thì ab+4 là số chính phương.
Chứng minh: Với b=4 thì
ab+4= a(a+4) +4 =a2+4a+4=(a+2)2
vì sao m=a+2 vậy ad
Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương
Tick nha
Này nhé:
Ta có:
Giả sử: ab + 4 = A2
<=>a2 - 4 = ab
<=> A2 - 22 = ab
<=> (A+2)(A-2) = ab : luôn đúng với mọi a,b
=> Đpcm
Nhớ tick đó!
Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
nhanh để mik tích
Đặt ab + 4 = m22 (m ∈ N)
⇒ab = m22− 4 = (m − 2) (m + 2)
⇒b =(m−2).(m+2)a(m−2).(m+2)a
Ta có:m=a+2⇒⇒ m-2=a
⇒⇒b=a(a+4)aa(a+4)a=a+4
Vậy với mọi số tự nhiên a luôn tồn tại b = a + 4 để ab + 4 là số chính phương.
mong bn tích cho mk
chứng minh rằng với mọi số tự nhiên a,tồn tại một số tự nhiên b sao cho ab+4 là một số chính phương
Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Answer:
Ta đặt: \(ab+4=m^2\)
\(\Rightarrow ab=m^2-4=\left(m-2\right).\left(m+2\right)\)
\(\Rightarrow b=\frac{\left(m-2\right).\left(m+2\right)}{a}\)
Ta có: \(m=a+2\)
\(\Rightarrow a=m-2\)
\(\Rightarrow b=\frac{a.\left(a+4\right)}{a}=a+4\)
Vậy với mọi số nguyên a luôn tồn tại \(b=a+4\) để \(ab+4\) là số chính phương