Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Anh
Xem chi tiết
Nguyễn Huy Tú
3 tháng 3 2017 lúc 20:16

\(\frac{x+1006}{1007}+\frac{x+1005}{1008}=\frac{x+1004}{1009}+\frac{x+1003}{1010}\)

\(\Rightarrow\left(\frac{x+1006}{1007}+1\right)+\left(\frac{x+1005}{1008}+1\right)=\left(\frac{x+1004}{1009}+1\right)+\left(\frac{x+1003}{1010}+1\right)\)

\(\Rightarrow\frac{x+2013}{1007}+\frac{x+2013}{1008}=\frac{x+2013}{1009}+\frac{x+2013}{1010}\)

\(\Rightarrow\frac{x+2013}{1007}+\frac{x+2013}{1008}-\frac{x+2013}{1009}-\frac{x+2013}{1010}=0\)

\(\Rightarrow\left(x+2013\right)\left(\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1009}-\frac{1}{1010}\right)=0\)

\(\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1009}-\frac{1}{1010}\ne0\)

\(\Rightarrow x+2013=0\)

\(\Rightarrow x=-2013\)

Vậy x = -2013

Hà Thu Hiền
Xem chi tiết
 Mashiro Shiina
6 tháng 12 2017 lúc 6:30

\(\dfrac{x-1001}{1006}+\dfrac{x-1003}{1004}+\dfrac{x-1005}{1002}+\dfrac{x-1007}{1000}=4\)

\(\Rightarrow\dfrac{x-1001}{1006}-1+\dfrac{x-1003}{1004}-1+\dfrac{x-1005}{1002}-1+\dfrac{x-1007}{1000}-1=0\)

\(\Rightarrow\dfrac{x-2007}{1006}+\dfrac{x-2007}{1004}+\dfrac{x-2007}{1002}+\dfrac{x-2007}{1000}=0\)

\(\Rightarrow\left(x-2007\right)\left(\dfrac{1}{1006}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}\right)=0\)

Dễ thấy: \(\dfrac{1}{1000}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}>0\Leftrightarrow x-2007=0\Leftrightarrow x=2007\)

Bướm Đêm Sát Thủ
Xem chi tiết
Nhã Doanh
25 tháng 3 2018 lúc 9:37

\(\dfrac{x-1001}{1006}+\dfrac{x-1003}{1004}+\dfrac{x-1005}{1002}+\dfrac{x-1007}{1000}=4\)

\(\Leftrightarrow\dfrac{x-1001}{1006}-1+\dfrac{x-1003}{1004}-1+\dfrac{x-1005}{1002}-1+\dfrac{x-1007}{1000}-1=0\)

\(\Leftrightarrow\dfrac{x-2007}{1006}+\dfrac{x-2007}{1004}+\dfrac{x-2007}{1002}+\dfrac{x-2007}{1000}=0\)

\(\Leftrightarrow\left(x-2007\right)\left(\dfrac{1}{1006}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}=0\right)\)

\(\Leftrightarrow x-2007=0\)

\(\Leftrightarrow x=2007\)

Nguyễn Ngọc Khánh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 14:23

\(\dfrac{1004}{1005}< \dfrac{1005}{1006}< \dfrac{1006}{1007}< \dfrac{1007}{1008}\)

Shuno
31 tháng 8 2021 lúc 15:40

1004/1005<1005/1006<1006/1007<1007/1008

Hoàng Đức Thịnh
Xem chi tiết
Vũ Thị Phương
20 tháng 7 2017 lúc 18:01

\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+.....+\dfrac{x+1007}{1008}=\dfrac{x+1008}{1007}+\dfrac{x+1009}{1006}+........+\dfrac{x+2014}{1}\)\(\Leftrightarrow\left(\dfrac{x+1}{2014}+1\right)+\left(\dfrac{x+2}{2013}+1\right)+...+\left(\dfrac{x+1007}{1008}+1\right)=\left(\dfrac{x+1008}{1007}+1\right)+\left(\dfrac{x+1009}{1006}+1\right)+...+\left(\dfrac{x+2014}{1}+1\right)\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+1007}{1008}=\dfrac{x+2015}{1007}+\dfrac{x+1009}{1006}+...+\dfrac{x+2014}{1}\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+2015}{1008}-\dfrac{x+1008}{1007}-\dfrac{x+2015}{1006}-...-\dfrac{x+2015}{1}=0\)\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1\right)=0\)\(\Leftrightarrow x+2015=0\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1>0\right)\)\(\Leftrightarrow x=-2015\)

Vậy x=-2015

Dương lê
Xem chi tiết
Vương Hy
1 tháng 4 2018 lúc 16:34

Viết thiếu đầu bài rồi bạn ơi !

Lai Minh Sang
Xem chi tiết
Mỵ Nguyễn Thị
Xem chi tiết
Phùng Minh Quân
26 tháng 4 2018 lúc 10:38

Đặt \(A=\frac{1005}{1006}+\frac{1006}{1007}+\frac{1007}{1008}+\frac{1008}{1005}\) ta có : 

\(A=\frac{1006-1}{1006}+\frac{1007-1}{1007}+\frac{1008-1}{1008}+\frac{1005+3}{1005}\)

\(A=\frac{1006}{1006}-\frac{1}{1006}+\frac{1007}{1007}-\frac{1}{1007}+\frac{1008}{1008}-\frac{1}{1008}+\frac{1005}{1005}+\frac{3}{1005}\)

\(A=1-\frac{1}{1006}+1-\frac{1}{1007}+1-\frac{1}{1008}+1+\frac{3}{1005}\)

\(A=\left(1+1+1+1\right)-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{3}{1005}\right)\)

\(A=4-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1005}-\frac{1}{1005}-\frac{1}{1005}\right)\)

\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]\)

Mà : 

\(\frac{1}{1006}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1006}-\frac{1}{1005}< 0\) \(\left(1\right)\)

\(\frac{1}{1007}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1007}-\frac{1}{1005}< 0\) \(\left(2\right)\)

\(\frac{1}{1008}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1008}-\frac{1}{1005}< 0\) \(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)< 0\)

\(\Rightarrow\)\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]>4\)

\(\Rightarrow\)\(A>4\) ( điều phải chứng minh ) 

Vậy \(A>4\)

Chúc bạn học tốt ~ 

Angla Salicxic
Xem chi tiết
Nguyệt
10 tháng 11 2018 lúc 20:01

\(\frac{14^{1005}.5^{1006}}{2^{1007}.35^{1004}}\)

\(=\frac{2^{1005}.7^{1005}.5^{1006}}{2^{1007}.5^{1004}.7^{1004}}\)

\(=\frac{5^2.7}{2^2}=\frac{25.7}{4}=\frac{175}{4}\)

Angla Salicxic
10 tháng 11 2018 lúc 20:11

TRẦN TIỂU HY ƠI, BẠN TRÌNH BÀY RA GIÙM MK NHA. MK KO HIỂU LẮM

Member lỗi thời :>>...
28 tháng 7 2021 lúc 8:36

\(\frac{14^{1005}.5^{1006}}{2^{1007}.35^{1004}}=\frac{2^{1005}.7^{1005}.5^{1006}}{2^{1007}.5^{1004}.7^{1004}}\)

\(=\frac{5^2.7}{2^2}=\frac{25.7}{4}=\frac{175}{4}\)

Khách vãng lai đã xóa