Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Linh Nhi
Xem chi tiết
gấukoala
Xem chi tiết
Phạm Đức Nghĩa( E)
Xem chi tiết
Nguyễn Hưng Phát
10 tháng 2 2019 lúc 22:29

Giả sử \(y\ge z\Rightarrow\frac{4x}{1+4x}\ge\frac{4y}{1+4y}\Leftrightarrow1-\frac{1}{1+4x}\ge1-\frac{1}{1+4y}\)

\(\Leftrightarrow\frac{1}{1+4x}\le\frac{1}{1+4y}\Leftrightarrow1+4x\ge1+4y\Leftrightarrow x\ge y\)

\(\Rightarrow\frac{4z}{1+4z}\ge\frac{4x}{1+4x}\).Tương tự:\(z\ge x\).Nên \(x=y=z\).

Thế vào mà giải nhé

My Nguyễn
Xem chi tiết
Hoàng Phúc
26 tháng 11 2016 lúc 22:10

áp dụng bđt \(\frac{a+b}{2}\ge\sqrt{ab}\),dấu "=" xảy ra <=>a=b

\(\sqrt{\left(4x-1\right).1}\le\frac{1+4x-1}{2}=2x\)

Tương tự \(\sqrt{\left(4y-1\right).1}\le\frac{1+4y-1}{2}=2y;\sqrt{\left(4z-1\right).1}\le\frac{1+4z-1}{2}=2z\)

Cộng theo vế:

=>\(2\left(x+y+z\right)\ge\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{cases}}< =>x=y=z=\frac{1}{2}\)
 

Lê Thủy Vân
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 18:10

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

Nguyên Phương
Xem chi tiết
Bùi Khánh Linh
Xem chi tiết
alibaba nguyễn
4 tháng 11 2016 lúc 22:30

Ta có

\(\sqrt{4x-1}\le\frac{1+4x-1}{2}=2x\)

\(\sqrt{4y-1}\le2y\)

\(\sqrt{4z-1}\le2z\)

Cộng vế theo vế ta được

\(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\le2\left(x+y+z\right)\)

Theo đề bài ta có khi cộng pt (1), (2), (3) vế theo vế thì được

\(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}=2\left(x+y+z\right)\)

Dấu = xảy ra khi x = y = z = \(\frac{1}{2}\)

My Nguyễn
Xem chi tiết