\(\text{⋄}\)Xét xyz = 0 thì dễ có x = y = z = 0 (Nếu giả sử x = 0 thì 4y2(1 - x) = 0 hay y = 0 do đó 4z2(1 - y) = 0 suy ra z = 0, tương tự đối với y, z = 0)
\(\text{⋄}\)Xét \(xyz\ne0\)thì từ hệ suy ra \(xyz=64x^2y^2z^2\left(1-x\right)\left(1-y\right)\left(1-z\right)\Leftrightarrow64xyz\left(1-x\right)\left(1-y\right)\left(1-z\right)=1\)(*)
Dễ có: \(\left(2x-1\right)^2\ge0\Leftrightarrow4x\left(1-x\right)\le1\), tương tự: \(4y\left(1-y\right)\le1;4z\left(1-z\right)\le1\)suy ra \(64xyz\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1\)
Như vậy điều kiện để (*) xảy ra là \(x=y=z=\frac{1}{2}\)
Vậy hệ có 2 nghiệm \(\left(x,y,z\right)\in\left\{\left(0;0;0\right),\left(\frac{1}{2};\frac{1}{2};\frac{1}{2}\right)\right\}\)