Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 19:32

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

Phạm Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 23:12

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: góc C=180-50-60=70 độ

Xét ΔABC có góc A<góc B<góc C

nên BC<AC<AB

Hải Nam Xiumin
Xem chi tiết
Huỳnh Thu An
15 tháng 8 2016 lúc 16:23

Giải:

Toán lớp 9
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=70
0, góc C=50nên góc A=600

Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400

Áp dụng HTCVGTTGV ABH,ta có :

BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 70=23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)

Toán lớp 9

Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.

Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1
 =300

Xét tam giác vuông AHC,ta có:
AH2 +HC2  =AC2
(12√3) +18=AC2

=>AC=6√21 (cm)

Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH

                                                       12√3=tan góc C.18

                                                       => góc C=49=>góc A=41=>gócA= 710

Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm

Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490    

Ròy đóa Tuyền thanghoa

 

 

 

N. T.Huyền
Xem chi tiết
An Phú 8C Lưu
14 tháng 11 2021 lúc 20:19

 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:55

Ta có: \(\widehat B = {75^o},\widehat C = {45^o}\)\( \Rightarrow \widehat A = {180^o} - \left( {{{75}^o} + {{45}^o}} \right) = {60^o}\)

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)

\( \Rightarrow AB = \sin C.\frac{{BC}}{{\sin A}} = \sin {45^o}.\frac{{50}}{{\sin {{60}^o}}} \approx 40,8\)

Vậy độ dài cạnh AB là 40,8.

Hà Anh Thư
Xem chi tiết
Yen Nhi
23 tháng 5 2021 lúc 9:09

Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.

a, Tính độ dài cạnh BC của tam giác ABC.

b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.

c, Chứng minh CB = CD.

* Hình tự vẽ 

a)

Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm

b)

Xét tam giác DBC, ta có:

BK là trung tuyến ứng với cạnh CD ( gt )

CA là trung tuyến ứng với cạnh BD ( AB = AD )

BK giao với CA tại E

=> E là trọng tâm của tam giác BDC

=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm

c)

Xét tam giác BDC, ta có:

CA là trung tuyến ứng với cạnh BD

CA là đường cao ứng với cạnh BD

=> Tam giác BDC cân tại C

=> CB = CD

Khách vãng lai đã xóa
Yen Nhi
23 tháng 5 2021 lúc 9:24

Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC

B A C

Theo đề ra: Góc A = 50 độ

                   Góc B = 60 độ

                   Góc C = 70 độ

=> Góc A < góc B < góc C

=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )

Khách vãng lai đã xóa
Sam Sam
Xem chi tiết
Sam Sam
Xem chi tiết
Spectre
2 tháng 7 2017 lúc 18:03

ABH^ = 45* và AHB^ = 90* => AHB là tam giác vuông cân 
=> AH = BH (1) 
ACH^ = 180* - A^ - B^ = 180* - 105* - 45* = 30* 
=> AH = AC/2 => AC = 2AH 
BC = CH + BH = 4 => CH = 4 - BH (2) 
(1) và (2) => CH = 4 - AH 
AC^2 = CH^2 + AH^2 
4AH^2 = (4 - AH)^2 + AH^2 
4AH^2 = 16 - 8AH^2 + AH^2 + AH^2 
<=> 2AH^2 + 8AH - 16 = 0 
<=> AH^2 + 4AH - 8 = 0 
=> AH = 2(√3 -1) 
=> AB^2 = 2AH^2 = 2.4(3 - 2√3 + 1) = 8(4 - 2√3) = 16(2 - √3) 
=> AB = 4√(2 - √3) 
AC = 2AH = 4(√3 -1)

Spectre
2 tháng 7 2017 lúc 18:05

bạn nên nhớ 2 công thức sau: 

+ trong tam giác có góc A = 60độ thì ta có: BC² = AB² + AC² - AC.AB. 

+ trong tam giác có góc A = 120độ thì ta có: BC² = AB² + AC² + AC.AB. 

Giải: Kẻ đường cao BH của ∆ABC. xét tam giác ABH vuông tại H, có góc BAH = 60độ => góc ABH = 30độ => AB = 2.AH (bổ đề: trong tam giác vuông có góc = 30độ, thì cạnh đối diện với góc 30độ = nửa cạnh huyền - c/m không khó).. 

Xét ∆BHC vuông tại H => BC² = BH² + HC² = BH² + (AC - AH)² 

= BH² + AH² + AC² - 2.AH.AC 

= (BH² + AH²) + AC² - AB.AC (vì AB = 2AH) 

= AB² + AC² - AB.AC => ta đã c/m đc. công thức 1. Thay AB = 28cm và AC = 35cm vào ta tính được BC = √1029 (cm) ≈ 32,08 (cm) 

Công thức 2 thì cách chứng minh cũng khá giống, cũng kẻ đường cao từ B. Tự chứng minh nha bạn ^^

Sam Sam
2 tháng 7 2017 lúc 19:36

Cảm ơn bạn nhìu nha <3

Sam Sam
Xem chi tiết